IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i16p3351-3359.html
   My bibliography  Save this article

Transient fluctuation of the prosperity of firms in a network economy

Author

Listed:
  • Maeno, Yoshiharu

Abstract

The transient fluctuation of the prosperity of firms in a network economy is investigated with an abstract stochastic model. The model describes the profit which firms make when they sell materials to a firm which produces a product and the fixed cost expense to the firms to produce those materials and product. The formulas for this model are parallel to those for population dynamics. The swinging changes in the fluctuation in the transient state from the initial growth to the final steady state are the consequence of a topology-dependent time trial competition between the profitable interactions and expense. The firm in a sparse random network economy is more likely to go bankrupt than expected from the value of the limit of the fluctuation in the steady state, and there is a risk of failing to reach by far the less fluctuating steady state.

Suggested Citation

  • Maeno, Yoshiharu, 2013. "Transient fluctuation of the prosperity of firms in a network economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3351-3359.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:16:p:3351-3359
    DOI: 10.1016/j.physa.2013.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002793
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    2. Maeno, Yoshiharu, 2011. "Discovery of a missing disease spreader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3412-3426.
    3. Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Russo, Alberto & Stiglitz, Joseph E., 2010. "The financial accelerator in an evolving credit network," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1627-1650, September.
    4. Martínez-Jaramillo, Serafín & Pérez, Omar Pérez & Embriz, Fernando Avila & Dey, Fabrizio López Gallo, 2010. "Systemic risk, financial contagion and financial fragility," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2358-2374, November.
    5. Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Russo, Alberto & Stiglitz, Joseph E., 2006. "Business fluctuations in a credit-network economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 68-74.
    6. Beyeler, Walter E. & Glass, Robert J. & Bech, Morten L. & Soramäki, Kimmo, 2007. "Congestion and cascades in payment systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 693-718.
    7. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    8. Maeno, Yoshiharu, 2010. "Discovering network behind infectious disease outbreak," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4755-4768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Cai & Yan, Chao & Zhang, Zili & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "An amoeboid algorithm for solving linear transportation problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 179-186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    2. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2012. "Optimal portfolio for a robust financial system," Papers 1211.5235, arXiv.org, revised Feb 2013.
    3. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    4. Ladley, Daniel, 2013. "Contagion and risk-sharing on the inter-bank market," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1384-1400.
    5. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    6. Michel Alexandre & Gilberto Tadeu Lima & Luca Riccetti & Alberto Russo, 2023. "The financial network channel of monetary policy transmission: an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 533-571, July.
    7. He, Jianmin & Sui, Xin & Li, Shouwei, 2016. "An endogenous model of the credit network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 1-14.
    8. Yoshiharu Maeno & Satoshi Morinaga & Hirokazu Matsushima & Kenichi Amagai, 2012. "Transmission of distress in a bank credit network," Papers 1204.5661, arXiv.org, revised Nov 2012.
    9. Pawe{l} Smaga & Mateusz Wili'nski & Piotr Ochnicki & Piotr Arendarski & Tomasz Gubiec, 2016. "Can banks default overnight? Modeling endogenous contagion on O/N interbank market," Papers 1603.05142, arXiv.org.
    10. Riccetti, Luca & Russo, Alberto & Gallegati, Mauro, 2013. "Leveraged network-based financial accelerator," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1626-1640.
    11. Vitali, Stefania & Battiston, Stefano & Gallegati, Mauro, 2016. "Financial fragility and distress propagation in a network of regions," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 56-75.
    12. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    13. He, Fang & Chen, Xi, 2016. "Credit networks and systemic risk of Chinese local financing platforms: Too central or too big to fail?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 158-170.
    14. Tabak, Benjamin Miranda & Silva, Thiago Christiano & Fiche, Marcelo Estrela & Braz, Tércio, 2021. "Citation likelihood analysis of the interbank financial networks literature: A machine learning and bibliometric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    15. Fariba Karimi & Matthias Raddant, 2016. "Cascades in Real Interbank Markets," Computational Economics, Springer;Society for Computational Economics, vol. 47(1), pages 49-66, January.
    16. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    17. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    18. Martínez, Constanza & León, Carlos, 2016. "The cost of collateralized borrowing in the Colombian money market: Does connectedness matter?," Journal of Financial Stability, Elsevier, vol. 25(C), pages 193-205.
    19. Mark Paddrik & H. Peyton Young, 2016. "Contagion in the CDS Market," Working Papers 16-12, Office of Financial Research, US Department of the Treasury.
    20. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:16:p:3351-3359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.