IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v90y2025ics0927538x24003846.html
   My bibliography  Save this article

Finance-specific large language models: Advancing sentiment analysis and return prediction with LLaMA 2

Author

Listed:
  • Chiu, I-Chan
  • Hung, Mao-Wei

Abstract

In this study, we develop an AI-driven summarization process for lengthy financial texts to improve our self-trained, finance-specific LLaMA-2 model. This approach allows for precise sentiment analysis, leading to more accurate return predictions on disclosures in the Management Discussion and Analysis sections of 10-K filings. Empirical results indicate that trading strategies based on LLaMA-2 sentiments produce significantly higher buy-and-hold returns (BHRs) compared to those derived from FinBERT (Huang et al., 2023) and traditional models. Furthermore, LLaMA-2 sentiment signals show a strong correlation with cumulative abnormal returns (CARs) and surpass traditional methods in predictive accuracy. The summarization process also enhances traditional models, generating significantly higher BHRs with summarized texts than with full texts. Both BHR and CAR results in our approach show robustness during periods of financial turbulence. These findings underscore the value of generative AI in finance and set a new standard for textual analysis.

Suggested Citation

  • Chiu, I-Chan & Hung, Mao-Wei, 2025. "Finance-specific large language models: Advancing sentiment analysis and return prediction with LLaMA 2," Pacific-Basin Finance Journal, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:pacfin:v:90:y:2025:i:c:s0927538x24003846
    DOI: 10.1016/j.pacfin.2024.102632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X24003846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2024.102632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lutz, Chandler, 2016. "The Asymmetric Effects Of Investor Sentiment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(6), pages 1477-1503, September.
    2. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    3. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    4. Yi Yang & Yixuan Tang & Kar Yan Tam, 2023. "InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning," Papers 2309.13064, arXiv.org.
    5. Oleksandr Romanko & Akhilesh Narayan & Roy H. Kwon, 2023. "ChatGPT-Based Investment Portfolio Selection," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
    6. Steven L. Heston & Nitish Ranjan Sinha, 2017. "News vs. Sentiment: Predicting Stock Returns from News Stories," Financial Analysts Journal, Taylor & Francis Journals, vol. 73(3), pages 67-83, July.
    7. Paul C. Tetlock, 2010. "Does Public Financial News Resolve Asymmetric Information?," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3520-3557.
    8. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    9. Lonare, Gunratan & Patil, Bharat & Raut, Nilesh, 2021. "edgar: an R package for the U.S. SEC EDGAR retrieval and parsing of corporate filings," LSE Research Online Documents on Economics 112672, London School of Economics and Political Science, LSE Library.
    10. Mehran Azimi & Anup Agrawal, 2021. "Is Positive Sentiment in Corporate Annual Reports Informative? Evidence from Deep Learning [Cash holdings and credit risk]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 11(4), pages 762-805.
    11. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    12. Wataru Souma & Irena Vodenska & Hideaki Aoyama, 2019. "Enhanced news sentiment analysis using deep learning methods," Journal of Computational Social Science, Springer, vol. 2(1), pages 33-46, January.
    13. Beaver, Wh, 1968. "Information Content Of Annual Earnings Announcements," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 6, pages 67-92.
    14. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    15. Richard Frankel & Jared Jennings & Joshua Lee, 2022. "Disclosure Sentiment: Machine Learning vs. Dictionary Methods," Management Science, INFORMS, vol. 68(7), pages 5514-5532, July.
    16. Jun Sik Kim & Da-Hea Kim & Sung Won Seo, 2017. "Investor Sentiment and Return Predictability of the Option to Stock Volume Ratio," Financial Management, Financial Management Association International, vol. 46(3), pages 767-796, September.
    17. Volkan Muslu & Suresh Radhakrishnan & K. R. Subramanyam & Dongkuk Lim, 2015. "Forward-Looking MD&A Disclosures and the Information Environment," Management Science, INFORMS, vol. 61(5), pages 931-948, May.
    18. Eric C. Chang & Tse-Chun Lin & Yan Luo & Jinjuan Ren, 2019. "Ex-Day Returns of Stock Distributions: An Anchoring Explanation," Management Science, INFORMS, vol. 65(3), pages 1076-1095, March.
    19. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    20. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 54(4), pages 1187-1230, September.
    21. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    22. Eric K. Kelley & Paul C. Tetlock, 2013. "How Wise Are Crowds? Insights from Retail Orders and Stock Returns," Journal of Finance, American Finance Association, vol. 68(3), pages 1229-1265, June.
    23. Oleksandr Romanko & Akhilesh Narayan & Roy H. Kwon, 2023. "ChatGPT-based Investment Portfolio Selection," Papers 2308.06260, arXiv.org.
    24. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    25. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    2. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    3. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    4. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    5. Szymon Lis, 2024. "Investor Sentiment in Asset Pricing Models: A Review of Empirical Evidence," Papers 2411.13180, arXiv.org.
    6. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    7. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2018. "Textual Sentiment, Option Characteristics, and Stock Return Predictability," IRTG 1792 Discussion Papers 2018-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Fang, Hao & Chung, Chien-Ping & Lu, Yang-Cheng & Lee, Yen-Hsien & Wang, Wen-Hao, 2021. "The impacts of investors' sentiments on stock returns using fintech approaches," International Review of Financial Analysis, Elsevier, vol. 77(C).
    9. Mohammad Alomari & Abdel Razzaq Al rababa’a & Ghaith El-Nader & Ahmad Alkhataybeh, 2021. "Who’s behind the wheel? The role of social and media news in driving the stock–bond correlation," Review of Quantitative Finance and Accounting, Springer, vol. 57(3), pages 959-1007, October.
    10. Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
    11. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    12. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    13. Onur Bayar & Emre Kesici, 2024. "The impact of social media on venture capital financing: evidence from Twitter interactions," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 195-224, January.
    14. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    15. Münster, Markus & Reichenbach, Felix & Walther, Martin, 2024. "Robinhood, Reddit, and the news: The impact of traditional and social media on retail investor trading," Journal of Financial Markets, Elsevier, vol. 71(C).
    16. Bouteska, Ahmed & Mefteh-Wali, Salma & Dang, Trung, 2022. "Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    18. Liu, Sha & Han, Jingguang, 2020. "Media tone and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 70(C).
    19. Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Digital Finance, Springer, vol. 2(1), pages 1-13, September.
    20. Renato Camodeca & Alex Almici & Umberto Sagliaschi, 2018. "Sustainability Disclosure in Integrated Reporting: Does It Matter to Investors? A Cheap Talk Approach," Sustainability, MDPI, vol. 10(12), pages 1-34, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:90:y:2025:i:c:s0927538x24003846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.