IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v91y2020icp90-98.html
   My bibliography  Save this article

General existence of competitive equilibrium in the growth model with an endogenous labor–leisure choice

Author

Listed:
  • Goenka, Aditya
  • Nguyen, Manh-Hung

Abstract

We prove the existence of competitive equilibrium in the canonical optimal growth model with elastic labor supply under general conditions. In this model, strong conditions to rule out corner solutions are often not well justified. We show using a separation argument that there exist Lagrange multipliers that can be viewed as a system of competitive prices. Neither Inada conditions, nor strict concavity, nor homogeneity, nor differentiability are required for existence of a competitive equilibrium. Thus, we cover important specifications used in the macroeconomics literature for which existence of a competitive equilibrium is not well understood. We give examples to illustrate the violation of the conditions used in earlier existence results but where a competitive equilibrium can be shown to exist following the approach in this paper.

Suggested Citation

  • Goenka, Aditya & Nguyen, Manh-Hung, 2020. "General existence of competitive equilibrium in the growth model with an endogenous labor–leisure choice," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 90-98.
  • Handle: RePEc:eee:mateco:v:91:y:2020:i:c:p:90-98
    DOI: 10.1016/j.jmateco.2020.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406820300926
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    2. Le Van, Cuong & Cagri Saglam, H., 2004. "Optimal growth models and the Lagrange multiplier," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 393-410, June.
    3. Peleg, Bezalel & Yaari, Menahem E, 1970. "Markets with Countably Many Commodities," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(3), pages 369-377, October.
    4. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    5. Aiyagari, S. Rao & Christiano, Lawrence J. & Eichenbaum, Martin, 1992. "The output, employment, and interest rate effects of government consumption," Journal of Monetary Economics, Elsevier, vol. 30(1), pages 73-86, October.
    6. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    7. Datta, Manjira & Mirman, Leonard J. & Reffett, Kevin L., 2002. "Existence and Uniqueness of Equilibrium in Distorted Dynamic Economies with Capital and Labor," Journal of Economic Theory, Elsevier, vol. 103(2), pages 377-410, April.
    8. Cuong Le Van & Yiannis Vailakis, 2003. "Existence of a competitive equilibrium in a one sector growth model with heterogeneous agents and irreversible investment," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(4), pages 743-771, November.
    9. repec:dau:papers:123456789/13605 is not listed on IDEAS
    10. Greenwood Jeremy & Huffman Gregory W., 1995. "On the Existence of Nonoptimal Equilibria in Dynamic Stochastic Economies," Journal of Economic Theory, Elsevier, vol. 65(2), pages 611-623, April.
    11. Le Van, Cuong & Cagri Saglam, H., 2004. "Optimal growth models and the Lagrange multiplier," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 393-410, June.
    12. Yano, Makoto, 1984. "Competitive Equilibria on Turnpikes in a McKenzie Economy, I: A Neighborhood Turnpike Theorem," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 695-717, October.
    13. Le Van, Cuong & Nguyen, Manh-Hung & Vailakis, Yiannis, 2007. "Equilibrium dynamics in an aggregative model of capital accumulation with heterogeneous agents and elastic labor," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 287-317, April.
    14. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    15. Aliprantis, Charalambos D. & Border, Kim C. & Burkinshaw, Owen, 1997. "New Proof Of The Existence Of Equilibrium In A Single-Sector Growth Model," Macroeconomic Dynamics, Cambridge University Press, vol. 1(4), pages 669-679, December.
    16. Iwasa, Kazumichi & Sorger, Gerhard, 2018. "Periodic solutions of the one-sector growth model: The role of income effects," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 59-63.
    17. Takashi Kamihigashi, 2015. "Multiple interior steady states in the Ramsey model with elastic labor supply," International Journal of Economic Theory, The International Society for Economic Theory, vol. 11(1), pages 25-37, March.
    18. Makoto Yano, 1990. "Von neumann facets and the dynamic stability of perfect foresight equilibrium paths in neo-classical trade models," Journal of Economics, Springer, vol. 51(1), pages 27-69, February.
    19. Rogerson, Richard, 1988. "Indivisible labor, lotteries and equilibrium," Journal of Monetary Economics, Elsevier, vol. 21(1), pages 3-16, January.
    20. Gerhard Sorger, 2018. "Cycles and chaos in the one-sector growth model with elastic labor supply," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(1), pages 55-77, January.
    21. Cuong Le Van & Rose-Anne Dana, 2003. "Dynamic Programming in Economics," Post-Print halshs-00119098, HAL.
    22. Cuong Le Van & Yiannis Vailakis, 2004. "Existence of competitive equilibrium in a single-sector growth model with elastic labour," Cahiers de la Maison des Sciences Economiques b04123, Université Panthéon-Sorbonne (Paris 1).
    23. Cuong Le Van & Yiannis Vailakis, 2003. "Existence of a competitive equilibrium in a one sector growth model with heterogeneous agents and irreversible investment," Post-Print halshs-00119095, HAL.
    24. Cuong Le Van & Rose-Anne Dana, 2003. "Dynamic Programming in Economics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00119098, HAL.
    25. Coleman, Wilbur II, 1997. "Equilibria in Distorted Infinite-Horizon Economies with Capital and Labor," Journal of Economic Theory, Elsevier, vol. 72(2), pages 446-461, February.
    26. repec:dau:papers:123456789/416 is not listed on IDEAS
    27. Bewley, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," Journal of Economic Theory, Elsevier, vol. 4(3), pages 514-540, June.
    28. Makoto Yano, 1998. "On the Dual Stability of a von Neumann Facet and the Inefficacy of Temporary Fiscal Policy," Econometrica, Econometric Society, vol. 66(2), pages 427-452, March.
    29. Dechert, W. D., 1982. "Lagrange multipliers in infinite horizon discrete time optimal control models," Journal of Mathematical Economics, Elsevier, vol. 9(3), pages 285-302, March.
    30. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    2. Goenka, Aditya & Le Van, Cuong & Nguyen, Manh-Hung, 2012. "Existence Of Competitive Equilibrium In An Optimal Growth Model With Heterogeneous Agents And Endogenous Leisure," Macroeconomic Dynamics, Cambridge University Press, vol. 16(S1), pages 33-51, April.
    3. GOENKA Aditya & NGUYEN Manh-Hung, 2009. "Existence of competitive equilibrium in an optimal growth model with elastic labor supply and smoothness of the policy function," LERNA Working Papers 09.21.297, LERNA, University of Toulouse.
    4. Goenka, Aditya & Nguyen, Manh-Hung, 2011. "Equilibrium in the growth model with an endogenous labor-leisure choice," LERNA Working Papers 11.06.340, LERNA, University of Toulouse.
    5. Nguyen Manh Hung & San Nguyen Van, 2005. "The Lagrange multipliers and existence of competitive equilibrium in an intertemporal model with endogenous leisure," Cahiers de la Maison des Sciences Economiques b05041, Université Panthéon-Sorbonne (Paris 1).
    6. Cuong Le Van & Manh-Hung Nguyen, 2005. "Existence of competitive equilibrium in a single-sector growth model with heterogeneous agents and endogenous leisure," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00197533, HAL.
    7. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.
    8. Cuong Le Van & Yiannis Vailakis, 2004. "Existence of competitive equilibrium in a single-sector growth model with elastic labour," Cahiers de la Maison des Sciences Economiques b04123, Université Panthéon-Sorbonne (Paris 1).
    9. Luis Alcalá & Fernando Tohmé & Carlos Dabús, 2019. "Strategic Growth with Recursive Preferences: Decreasing Marginal Impatience," Dynamic Games and Applications, Springer, vol. 9(2), pages 314-365, June.
    10. Aditya Goenka & Cuong Le Van & Manh-Hung Nguyen, 2011. "A study of the dynamic of influence through differential equations," Documents de travail du Centre d'Economie de la Sorbonne 11023, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Le Van, Cuong & Schubert, Katheline & Nguyen, Tu Anh, 2010. "With exhaustible resources, can a developing country escape from the poverty trap?," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2435-2447, November.
    12. Jean-Michel Grandmont, 2013. "Tribute to Cuong Le Van," International Journal of Economic Theory, The International Society for Economic Theory, vol. 9(1), pages 5-10, March.
    13. Becker, Robert A. & Borissov, Kirill & Dubey, Ram Sewak, 2015. "Ramsey equilibrium with liberal borrowing," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 296-304.
    14. Paweł Dziewulski, 2011. "On Time-to-Build Economies with Multiple-Stage Investments," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 23-49.
    15. Atsumasa Kondo, 2008. "On The Inefficacy Of Temporary Policy In A Dynamic General Equilibrium With Money," The Japanese Economic Review, Japanese Economic Association, vol. 59(3), pages 324-344, September.
    16. Durán, Jorge & Le Van, Cuong, 2003. "Simple Proof Of Existence Of Equilibrium In A One-Sector Growth Model With Bounded Or Unbounded Returns From Below," Macroeconomic Dynamics, Cambridge University Press, vol. 7(3), pages 317-332, June.
    17. Manjira Datta & Kevin Reffett & Łukasz Woźny, 2018. "Comparing recursive equilibrium in economies with dynamic complementarities and indeterminacy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 593-626, October.
    18. Zhigang Feng & Jianjun Miao & Adrian Peralta‐Alva & Manuel S. Santos, 2014. "Numerical Simulation Of Nonoptimal Dynamic Equilibrium Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 83-110, February.
    19. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    20. Dupaigne, Martial & Fève, Patrick, 2016. "Persistent government spending and fiscal multipliers: The investment-channel," European Economic Review, Elsevier, vol. 89(C), pages 425-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:91:y:2020:i:c:p:90-98. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.