IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i5p1761-1769.html
   My bibliography  Save this article

Multivariate exponential smoothing: A Bayesian forecast approach based on simulation

Author

Listed:
  • Bermúdez, José D.
  • Corberán-Vallet, Ana
  • Vercher, Enriqueta

Abstract

This paper deals with the prediction of time series with correlated errors at each time point using a Bayesian forecast approach based on the multivariate Holt–Winters model. Assuming that each of the univariate time series comes from the univariate Holt–Winters model, all of them sharing a common structure, the multivariate Holt–Winters model can be formulated as a traditional multivariate regression model. This formulation facilitates obtaining the posterior distribution of the model parameters, which is not analytically tractable: simulation is needed. An acceptance sampling procedure is used in order to obtain a sample from this posterior distribution. Using Monte Carlo integration the predictive distribution is then approached. The forecasting performance of this procedure is illustrated using the hotel occupancy time series data from three provinces in Spain.

Suggested Citation

  • Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1761-1769
    DOI: 10.1016/j.matcom.2008.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408003145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
    2. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 1, pages 3-80, Elsevier.
    3. Phillip G. Enns & Joseph A. Machak & W. Allen Spivey & William J. Wrobleski, 1982. "Forecasting Applications of an Adaptive Multiple Exponential Smoothing Model," Management Science, INFORMS, vol. 28(9), pages 1035-1044, September.
    4. George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
    5. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    6. Pfeffermann, D. & Allon, J., 1989. "Multivariate exponential smoothing: Method and practice," International Journal of Forecasting, Elsevier, vol. 5(1), pages 83-98.
    7. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Multiple-input multiple-output vs. single-input single-output neural network forecasting”," IREA Working Papers 201502, University of Barcelona, Research Institute of Applied Economics, revised Jan 2015.
    2. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    4. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    2. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    3. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    4. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    5. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    6. J. Bermúdez & J. Segura & E. Vercher, 2008. "SIOPRED: a prediction and optimisation integrated system for demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 258-271, December.
    7. Triantafyllopoulos, Kostas, 2006. "Multivariate discount weighted regression and local level models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3702-3720, August.
    8. Croux, Christophe & Gelper, Sarah & Mahieu, Koen, 2010. "Robust exponential smoothing of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2999-3006, December.
    9. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    10. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2010. "Combining predictive densities using Bayesian filtering with applications to US economics data," Working Paper 2010/29, Norges Bank.
    11. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    12. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    13. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
    14. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    15. Tamara Mata & Carlos Llano, 2013. "Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects," Journal of Geographical Systems, Springer, vol. 15(3), pages 319-367, July.
    16. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    17. Christian Kascha & Francesco Ravazzolo, 2010. "Combining inflation density forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
    18. Maheu, John M. & McCurdy, Thomas H., 2009. "How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
    19. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    20. Bekiros, Stelios & Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2016. "Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs," Journal of Financial Stability, Elsevier, vol. 26(C), pages 216-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1761-1769. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.