IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i5p1761-1769.html
   My bibliography  Save this article

Multivariate exponential smoothing: A Bayesian forecast approach based on simulation

Author

Listed:
  • Bermúdez, José D.
  • Corberán-Vallet, Ana
  • Vercher, Enriqueta

Abstract

This paper deals with the prediction of time series with correlated errors at each time point using a Bayesian forecast approach based on the multivariate Holt–Winters model. Assuming that each of the univariate time series comes from the univariate Holt–Winters model, all of them sharing a common structure, the multivariate Holt–Winters model can be formulated as a traditional multivariate regression model. This formulation facilitates obtaining the posterior distribution of the model parameters, which is not analytically tractable: simulation is needed. An acceptance sampling procedure is used in order to obtain a sample from this posterior distribution. Using Monte Carlo integration the predictive distribution is then approached. The forecasting performance of this procedure is illustrated using the hotel occupancy time series data from three provinces in Spain.

Suggested Citation

  • Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1761-1769
    DOI: 10.1016/j.matcom.2008.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408003145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    2. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    3. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 1, pages 3-80, Elsevier.
    4. George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
    5. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    6. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
    7. Phillip G. Enns & Joseph A. Machak & W. Allen Spivey & William J. Wrobleski, 1982. "Forecasting Applications of an Adaptive Multiple Exponential Smoothing Model," Management Science, INFORMS, vol. 28(9), pages 1035-1044, September.
    8. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    9. Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
    10. Pfeffermann, D. & Allon, J., 1989. "Multivariate exponential smoothing: Method and practice," International Journal of Forecasting, Elsevier, vol. 5(1), pages 83-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Multiple-input multiple-output vs. single-input single-output neural network forecasting”," IREA Working Papers 201502, University of Barcelona, Research Institute of Applied Economics, revised Jan 2015.
    2. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    4. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
    2. Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
    3. George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
    4. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    5. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    6. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    7. José V. Segura-Heras & José D. Bermúdez & Ana Corberán-Vallet & Enriqueta Vercher, 2022. "Analysis of Weighting Strategies for Improving the Accuracy of Combined Forecasts," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. J D Bermúdez & J V Segura & E Vercher, 2010. "Bayesian forecasting with the Holt–Winters model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 164-171, January.
    10. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    11. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    12. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    13. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    14. Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
    15. Robert R. Andrawis & Amir F. Atiya, 2009. "A new Bayesian formulation for Holt's exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 218-234.
    16. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    17. Triantafyllopoulos, Kostas, 2006. "Multivariate discount weighted regression and local level models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3702-3720, August.
    18. Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
    19. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    20. Croux, Christophe & Gelper, Sarah & Mahieu, Koen, 2010. "Robust exponential smoothing of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2999-3006, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:5:p:1761-1769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.