IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i1d10.1057_jors.2008.152.html
   My bibliography  Save this article

Bayesian forecasting with the Holt–Winters model

Author

Listed:
  • J D Bermúdez

    (Universitat de València)

  • J V Segura

    (Universidad Miguel Hernández de Elche)

  • E Vercher

    () (Universitat de València)

Abstract

Exponential smoothing methods are widely used as forecasting techniques in inventory systems and business planning, where reliable prediction intervals are also required for a large number of series. This paper describes a Bayesian forecasting approach based on the Holt–Winters model, which allows obtaining accurate prediction intervals. We show how to build them incorporating the uncertainty due to the smoothing unknowns using a linear heteroscedastic model. That linear formulation simplifies obtaining the posterior distribution on the unknowns; a random sample from such posterior, which is not analytical, is provided using an acceptance sampling procedure and a Monte Carlo approach gives the predictive distributions. On the basis of this scheme, point-wise forecasts and prediction intervals are obtained. The accuracy of the proposed Bayesian forecasting approach for building prediction intervals is tested using the 3003 time series from the M3-competition.

Suggested Citation

  • J D Bermúdez & J V Segura & E Vercher, 2010. "Bayesian forecasting with the Holt–Winters model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 164-171, January.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2008.152
    DOI: 10.1057/jors.2008.152
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.152
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    3. J. Bermúdez & J. Segura & E. Vercher, 2008. "SIOPRED: a prediction and optimisation integrated system for demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 258-271, December.
    4. Granger, C. W. J. & White, Halbert & Kamstra, Mark, 1989. "Interval forecasting : An analysis based upon ARCH-quantile estimators," Journal of Econometrics, Elsevier, vol. 40(1), pages 87-96, January.
    5. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    6. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    7. Yar, Mohammed & Chatfield, Chris, 1990. "Prediction intervals for the Holt-Winters forecasting procedure," International Journal of Forecasting, Elsevier, vol. 6(1), pages 127-137.
    8. Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005. "Prediction intervals for exponential smoothing using two new classes of state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
    9. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
    10. Segura, J. V. & Vercher, E., 2001. "A spreadsheet modeling approach to the Holt-Winters optimal forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 375-388, June.
    11. Chatfield, Chris & Yar, Mohammed, 1991. "Prediction intervals for multiplicative Holt-Winters," International Journal of Forecasting, Elsevier, vol. 7(1), pages 31-37, May.
    12. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    2. Prak, Dennis & Teunter, Ruud, 2019. "A general method for addressing forecasting uncertainty in inventory models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 224-238.

    More about this item

    Keywords

    forecasting; time series; prediction intervals; simulation; M3-competition;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2008.152. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.palgrave-journals.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.