IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v220y2024icp673-695.html
   My bibliography  Save this article

Iteratively Sustained Sliding Mode Control based energy management in a DC Microgrid

Author

Listed:
  • Meenakshi, RM.
  • Selvi, K.

Abstract

Renewable energy sources (RES) are becoming potential reserves in power systems owing the capability of generation at customer ends by operating as a Microgrid. An efficient controller is indispensable for a stable and reliable power supply in the Microgrid premises. In this work, we propose an Iteratively Sustained Sliding Mode Controller (ISSMC) working in a two-level hierarchical architecture to respond appropriately for continuous tracking of uncertainties in a DC Microgrid. The DC Microgrid comprises of Solar Photovoltaic (PV) array source, battery-supercapacitor (SC) based hybrid energy storage system (HESS) and dynamic loads coupled at a DC-link. The proposed controller appropriately tracks the set points provided by an energy management algorithm at secondary level with the objective of power balance and constant voltage maintenance at the DC-link node. During uncertain conditions such as fluctuating irradiance pattern, variations in load demand and occurrence of faults within the microgid, the proposed controller retains the error signal over the sliding bounds by iteratively sustaining the sliding regime response of the Sliding Mode Control (SMC) law using Iterative Learning Control (ILC) method. The simulations were performed to evaluate the performance of the proposed controller under different operating conditions such as the step variations in irradiance and load demand profile. The controller response is recorded to analyze its steady-state operation, tracking accuracy, and effective cooperation of sources for energy management. Also, the effectiveness to preserve the sliding regime is demonstrated during power disturbances on the demand side of the DC Microgrid involving constant power loads and AC loads. It was found that the proposed controller provided adequate tracking accuracy and fast restoration to the steady state under all the operating conditions. To further emphasize the effectiveness of the controller, the simulations were also conducted for a real-time irradiance pattern. Furthermore, the controller behavior was also evaluated in the controller hardware-in-the-loop (C-HIL) test setup using a microcontroller unit TMS320F28379D Delfino Launchpad.

Suggested Citation

  • Meenakshi, RM. & Selvi, K., 2024. "Iteratively Sustained Sliding Mode Control based energy management in a DC Microgrid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 673-695.
  • Handle: RePEc:eee:matcom:v:220:y:2024:i:c:p:673-695
    DOI: 10.1016/j.matcom.2023.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423004299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:220:y:2024:i:c:p:673-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.