IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp739-754.html
   My bibliography  Save this article

A mixed-integer linear programming formulation for the modular layout of three-dimensional connected systems

Author

Listed:
  • O’Neill, Sam
  • Wrigley, Paul
  • Bagdasar, Ovidiu

Abstract

Given the considerable complexity of process plants, there has been a great deal of research focused on aiding the design of plant layout through mathematical optimisation, i.e. optimising the positioning of the equipment in the plant for space and cost efficiency. Recently, the use of modular approaches within the construction industry, whereby work is performed off-site before being assembled on-site, has become a popular and powerful way of reducing build schedules and costs. Modular approaches have many other real applications where items must be packed to minimise the connections between them (e.g. piping, wiring, modular office and factory layouts) and consider the modular layout of the system.

Suggested Citation

  • O’Neill, Sam & Wrigley, Paul & Bagdasar, Ovidiu, 2022. "A mixed-integer linear programming formulation for the modular layout of three-dimensional connected systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 739-754.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:739-754
    DOI: 10.1016/j.matcom.2021.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421003487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ruiqi & Zhao, Huan & Wu, Yan & Wang, Yufei & Feng, Xiao & Liu, Mengxi, 2018. "An industrial facility layout design method considering energy saving based on surplus rectangle fill algorithm," Energy, Elsevier, vol. 158(C), pages 1038-1051.
    2. H. Paul Williams, 2009. "Logic and Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-92280-5, December.
    3. H. Paul Williams, 2009. "Modelling In Logic For Integer Programming," International Series in Operations Research & Management Science, in: Logic and Integer Programming, chapter 0, pages 71-103, Springer.
    4. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Hebden & Fabian Winkler, 2021. "Impulse-Based Computation of Policy Counterfactuals," Finance and Economics Discussion Series 2021-042, Board of Governors of the Federal Reserve System (U.S.).
    2. Jaroslav Pluskal & Radovan Šomplák & Dušan Hrabec & Vlastimír Nevrlý & Lars Magnus Hvattum, 2022. "Optimal location and operation of waste-to-energy plants when future waste composition is uncertain," Operational Research, Springer, vol. 22(5), pages 5765-5790, November.
    3. Hao Qiang & Yanchun Hu & Wenqi Tang & Xiaohua Zhang, 2023. "Research on Optimization Strategy of Battery Swapping for Electric Taxis," Energies, MDPI, vol. 16(5), pages 1-15, February.
    4. Hua, Weiqi & Chen, Ying & Qadrdan, Meysam & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2022. "Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.
    6. Ioannou, George, 2006. "Time-phased creation of hybrid manufacturing systems," International Journal of Production Economics, Elsevier, vol. 102(2), pages 183-198, August.
    7. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    8. Kuldeep Lamba & Ravi Kumar & Shraddha Mishra & Shubhangini Rajput, 2020. "Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic," Annals of Operations Research, Springer, vol. 290(1), pages 5-26, July.
    9. Xuemin Liu & Guozhong Huang & Shengnan Ou & Xingyu Xiao & Xuehong Gao & Zhangzhou Meng & Youqiang Pan & Ibrahim M. Hezam, 2023. "Biobjective Optimization Model Considering Risk and Profit for the Multienterprise Layout Design in Village-Level Industrial Parks in China," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    10. J. N. Hooker & H. P. Williams, 2012. "Combining Equity and Utilitarianism in a Mathematical Programming Model," Management Science, INFORMS, vol. 58(9), pages 1682-1693, September.
    11. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    12. Vila Goncalves Filho, Eduardo & Jose Tiberti, Alexandre, 2006. "A group genetic algorithm for the machine cell formation problem," International Journal of Production Economics, Elsevier, vol. 102(1), pages 1-21, July.
    13. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    14. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2006. "A note on "a hybrid genetic algorithm for the dynamic plant layout problem"," International Journal of Production Economics, Elsevier, vol. 103(1), pages 87-89, September.
    15. Yu-Hsin Chen, Gary, 2013. "A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems," International Journal of Production Economics, Elsevier, vol. 142(2), pages 362-371.
    16. Scott P. Stevens & Susan W. Palocsay, 2017. "Teaching Use of Binary Variables in Integer Linear Programs: Formulating Logical Conditions," INFORMS Transactions on Education, INFORMS, vol. 18(1), pages 28-36, September.
    17. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    18. Hwang, Hark & Choi, Bum & Lee, Min-Jin, 2005. "A model for shelf space allocation and inventory control considering location and inventory level effects on demand," International Journal of Production Economics, Elsevier, vol. 97(2), pages 185-195, August.
    19. Dušan Hrabec & Jakub Kůdela & Radovan Šomplák & Vlastimír Nevrlý & Pavel Popela, 2020. "Circular economy implementation in waste management network design problem: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1441-1458, December.
    20. Siyu Xu & Yufei Wang & Xiao Feng, 2020. "Plant Layout Optimization for Chemical Industry Considering Inner Frame Structure Design," Sustainability, MDPI, vol. 12(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:739-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.