IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v102y2006i2p183-198.html
   My bibliography  Save this article

Time-phased creation of hybrid manufacturing systems

Author

Listed:
  • Ioannou, George

Abstract

No abstract is available for this item.

Suggested Citation

  • Ioannou, George, 2006. "Time-phased creation of hybrid manufacturing systems," International Journal of Production Economics, Elsevier, vol. 102(2), pages 183-198, August.
  • Handle: RePEc:eee:proeco:v:102:y:2006:i:2:p:183-198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(05)00070-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gungor, Zulal & Arikan, Feyzan, 2000. "Application of fuzzy decision making in part-machine grouping," International Journal of Production Economics, Elsevier, vol. 63(2), pages 181-193, January.
    2. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    3. D'Angelo, Andrea & Gastaldi, Massimo & Levialdi, Nathan, 2000. "Production variability and shop configuration: An experimental analysis," International Journal of Production Economics, Elsevier, vol. 68(1), pages 43-57, October.
    4. Al-Mubarak, Fahad & Canel, Cem & Khumawala, Basheer M., 2003. "A simulation study of focused cellular manufacturing as an alternative batch-processing layout," International Journal of Production Economics, Elsevier, vol. 83(2), pages 123-138, February.
    5. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    6. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    7. Hicks, C., 2004. "A genetic algorithm tool for designing manufacturing facilities in the capital goods industry," International Journal of Production Economics, Elsevier, vol. 90(2), pages 199-211, July.
    8. Logendran, Rasaratnam, 1993. "Methodology for converting a functional manufacturing system into a cellular manufacturing system," International Journal of Production Economics, Elsevier, vol. 29(1), pages 27-41, February.
    9. Hassan, Mohsen M. D., 1995. "Layout design in group technology manufacturing," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 173-188, March.
    10. Heragu, Sunderesh S., 1992. "Recent models and techniques for solving the layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 136-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safaei, Nima & Tavakkoli-Moghaddam, Reza, 2009. "Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 301-314, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nearchou, Andreas C., 2006. "Meta-heuristics from nature for the loop layout design problem," International Journal of Production Economics, Elsevier, vol. 101(2), pages 312-328, June.
    2. Kazuhiro Tsuchiya & Sunil Bharitkar & Yoshiyasu Takefuji, 1996. "A neural network approach to facility layout problems," European Journal of Operational Research, Elsevier, vol. 89(3), pages 556-563, March.
    3. Bazargan-Lari, Massoud, 1999. "Layout designs in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 112(2), pages 258-272, January.
    4. Kim, J. -Y. & Kim, Y. -D., 1995. "Graph theoretic heuristics for unequal-sized facility layout problems," Omega, Elsevier, vol. 23(4), pages 391-401, August.
    5. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    6. Irawan, Chandra Ade & Song, Xiang & Jones, Dylan & Akbari, Negar, 2017. "Layout optimisation for an installation port of an offshore wind farm," European Journal of Operational Research, Elsevier, vol. 259(1), pages 67-83.
    7. Matai, Rajesh, 2015. "Solving multi objective facility layout problem by modified simulated annealing," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 302-311.
    8. Eben-Chaime, Moshe & Bechar, Avital & Baron, Ana, 2011. "Economical evaluation of greenhouse layout design," International Journal of Production Economics, Elsevier, vol. 134(1), pages 246-254, November.
    9. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.
    10. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    11. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    12. Jerzy Grobelny & Rafal Michalski, 2016. "A concept of a flexible approach to the facilities layout problems in logistics systems," WORking papers in Management Science (WORMS) WORMS/16/11, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    13. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    14. Gomez, A. & Fernandez, Q. I. & De la Fuente Garcia, D. & Garcia, P. J., 2003. "Using genetic algorithms to resolve layout problems in facilities where there are aisles," International Journal of Production Economics, Elsevier, vol. 84(3), pages 271-282, June.
    15. Devise, Olivier & Pierreval, Henri, 2000. "Indicators for measuring performances of morphology and material handling systems in flexible manufacturing systems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 209-218, March.
    16. O’Neill, Sam & Wrigley, Paul & Bagdasar, Ovidiu, 2022. "A mixed-integer linear programming formulation for the modular layout of three-dimensional connected systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 739-754.
    17. Jerzy Grobelny & Rafal Michalski, 2016. "Experimental examination of facilities layout problems in logistics systems including objects with diverse sizes and shapes," WORking papers in Management Science (WORMS) WORMS/16/12, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Yang, Miin-Shen & Hung, Wen-Liang & Cheng, Fu-Chou, 2006. "Mixed-variable fuzzy clustering approach to part family and machine cell formation for GT applications," International Journal of Production Economics, Elsevier, vol. 103(1), pages 185-198, September.
    19. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    20. Jerzy Grobelny & Rafal Michalski, 2018. "Simulated annealing based on linguistic patterns: experimental examination of properties for various types of logistic problems," WORking papers in Management Science (WORMS) WORMS/18/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:102:y:2006:i:2:p:183-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.