IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v158y2019icp453-476.html
   My bibliography  Save this article

Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers

Author

Listed:
  • Mseddi, Amina
  • Le Ballois, Sandrine
  • Aloui, Helmi
  • Vido, Lionel

Abstract

This paper deals with a Wind Conversion System (WCS) based on a Hybrid Excitation Synchronous Generator (HESG) connected to an isolated load. The set is modeled under Matlab–Simulink. To ensure an efficient and reliable use of the system, a tight control remains vital. In fact, the dynamic equations of a turbine are strongly nonlinear as are the ones of a HESG; most of the system parameters are highly uncertain, and, at last, a WCS is always affected by disturbance sources such as load variances, harmonics, mechanical vibrations…To address these problems, robust control methods must be adopted. In this paper, two strategies for the control of variable speed wind turbine are investigated. First, an H∞ controller is implemented. Then, a second-generation CRONE controller is designed. The performance of the two regulators is compared with respect to the tracking of the optimal rotation speed, the attenuation of the mechanical vibration and the robustness to the uncertainty of the parameters, using time-domain simulations. It has been found that the CRONE controller is more robust to parameters uncertainty and minimizes the fluctuations of the torsional torque and the generator’s angular velocity. Finally, an experimental validation of the velocity controllers is presented to complete the simulation results and fully validate the chosen approach.

Suggested Citation

  • Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
  • Handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:453-476
    DOI: 10.1016/j.matcom.2018.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418302994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkoune, Karima & Ben Sedrine, Emna & Vido, Lionel & Le Ballois, Sandrine, 2017. "Robust control of hybrid excitation synchronous generator for wind applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 55-75.
    2. Leclercq, Ludovic & Robyns, Benoit & Grave, Jean-Michel, 2003. "Control based on fuzzy logic of a flywheel energy storage system associated with wind and diesel generators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 63(3), pages 271-280.
    3. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    4. Aguglia, Davide & Viarouge, Philippe & Wamkeue, René & Cros, Jérôme, 2010. "Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 252-262.
    5. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    6. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    7. Rahimi, Mohsen, 2016. "Drive train dynamics assessment and speed controller design in variable speed wind turbines," Renewable Energy, Elsevier, vol. 89(C), pages 716-729.
    8. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
    2. Kosuke Takahashi & Nyam Jargalsaikhan & Shriram Rangarajan & Ashraf Mohamed Hemeida & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Output Control of Three-Axis PMSG Wind Turbine Considering Torsional Vibration Using H Infinity Control," Energies, MDPI, vol. 13(13), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    2. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    3. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    4. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    5. Mérida, Jován & Aguilar, Luis T. & Dávila, Jorge, 2014. "Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization," Renewable Energy, Elsevier, vol. 71(C), pages 715-728.
    6. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    8. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    9. Liu, H. & Jiang, G.M. & Zhuang, H.Y. & Wang, K.J., 2008. "Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1402-1418, June.
    10. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    11. Yolanda Vidal & Leonardo Acho & Ningsu Luo & Mauricio Zapateiro & Francesc Pozo, 2012. "Power Control Design for Variable-Speed Wind Turbines," Energies, MDPI, vol. 5(8), pages 1-18, August.
    12. Yasser Maklad, 2014. "Sizing and Costing Optimisation of a Typical Wind/PV Hybrid Electricity Generation System for a Typical Residential Building in Urban Armidale NSW, Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 163-168.
    13. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    14. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    15. Nikita Tomin, 2023. "Robust Reinforcement Learning-Based Multiple Inputs and Multiple Outputs Controller for Wind Turbines," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    16. Tina, Giuseppe Marco & Gagliano, Salvina, 2011. "Probabilistic modelling of hybrid solar/wind power system with solar tracking system," Renewable Energy, Elsevier, vol. 36(6), pages 1719-1727.
    17. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    18. Cheng, Wen-Long & Li, Tong-Tong & Nian, Yong-Le & Xie, Kun, 2014. "Evaluation of working fluids for geothermal power generation from abandoned oil wells," Applied Energy, Elsevier, vol. 118(C), pages 238-245.
    19. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    20. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:453-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.