IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp716-729.html
   My bibliography  Save this article

Drive train dynamics assessment and speed controller design in variable speed wind turbines

Author

Listed:
  • Rahimi, Mohsen

Abstract

This paper deals with the speed controller design in DFIG based wind turbines, and investigates stability and performance of the drive train dynamics against different control strategies. It is shown that speed controller design based on the single mass drive train model may result in unstable mechanical modes, because it ignores the dynamics of the flexible shaft. Then, another control approach, known as feedforward compensation of the shaft torsional torque, is examined. It is shown that this control method results in poorly damped oscillations of torsional torque and turbine speed during the transient conditions. The open loop transfer function from the electromagnetic torque to the generator speed contains a dual quadratic function representing the dynamics of flexible shaft. The dual quadratic function comprises resonant and anti-resonant frequencies that greatly affect the stability of the drive train dynamics. Next, a step-by-step procedure for designing the speed controller based on the two-mass drive train model is proposed. The proposed speed controller provides stable closed loop system, zero tracking error, low-frequency disturbance rejection, and open-loop gain attenuation at the resonant frequency. At the end, performance of the proposed controller is investigated by the time domain simulations.

Suggested Citation

  • Rahimi, Mohsen, 2016. "Drive train dynamics assessment and speed controller design in variable speed wind turbines," Renewable Energy, Elsevier, vol. 89(C), pages 716-729.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:716-729
    DOI: 10.1016/j.renene.2015.12.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115305449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gayen, P.K. & Chatterjee, D. & Goswami, S.K., 2015. "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 89(C), pages 461-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:716-729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.