IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v96y2025ics0957178725001535.html

Integrating demand forecasting and deep reinforcement learning for real-time electric vehicle charging price optimization

Author

Listed:
  • Mahmud, Monowar
  • Abedin, Tarek
  • Mahfuzur Rahman, Md
  • Ashraf Shoishob, Shamiul
  • Sieh Kiong, Tiong
  • Nur-E-Alam, Mohammad

Abstract

The rapid growth of electric vehicles (EVs) demands efficient, grid-friendly charging systems. This study introduces a dynamic pricing framework combining short-term demand forecasting and deep reinforcement learning. Using Adaptive Charging Network (ACN) data, XGBoost predicts charging demand accurately (R2 = 0.84, MAE = 0.45 kW). Compared to a uniform rate applied to all charging usage, set at 0.15 USD/kWh across all hours, with no adjustment for system demand conditions or time-of-day, the optimized strategy enhanced total daily revenue by 133 % and diminished load variance by 72.37 %. The PPO agent also surpassed traditional Time-of-Use and demand-based pricing models by 67–94 %, while ensuring pricing stability with a price standard deviation of 0.132 USD/kWh. The simulation results illustrate the framework's efficacy in facilitating off-peak charging and improving grid reliability.

Suggested Citation

  • Mahmud, Monowar & Abedin, Tarek & Mahfuzur Rahman, Md & Ashraf Shoishob, Shamiul & Sieh Kiong, Tiong & Nur-E-Alam, Mohammad, 2025. "Integrating demand forecasting and deep reinforcement learning for real-time electric vehicle charging price optimization," Utilities Policy, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:juipol:v:96:y:2025:i:c:s0957178725001535
    DOI: 10.1016/j.jup.2025.102038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178725001535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2025.102038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    2. Zhang, Xingping & Liang, Yanni & Liu, Wenfeng, 2017. "Pricing model for the charging of electric vehicles based on system dynamics in Beijing," Energy, Elsevier, vol. 119(C), pages 218-234.
    3. Jun Yang & Jiejun Chen & Lei Chen & Feng Wang & Peiyuan Xie & Cilin Zeng, 2016. "A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles," Energies, MDPI, vol. 9(9), pages 1-18, August.
    4. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    5. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Haghani, Milad & Ghaderi, Hadi & Hensher, David, 2024. "Hidden effects and externalities of electric vehicles," Energy Policy, Elsevier, vol. 194(C).
    7. Jannesar Niri, Anahita & Poelzer, Gregory A. & Zhang, Steven E. & Rosenkranz, Jan & Pettersson, Maria & Ghorbani, Yousef, 2024. "Sustainability challenges throughout the electric vehicle battery value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yon-Hon Tsai & Ming-Tang Tsai, 2025. "Electricity Demand Forecasting and Risk Assessment for Campus Energy Management," Energies, MDPI, vol. 18(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    2. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    3. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    4. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    5. Peng, Yiyang & Li, Guoyuan & Xu, Min & Chen, Anthony, 2024. "Mixed-fleet operation of battery electric bus and hydrogen bus: Considering limited depot size with flexible refueling processes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    6. Luke, Justin & Ribeiro, Mateus Gheorghe de Castro & Martin, Sonia & Balogun, Emmanuel & Cezar, Gustavo Vianna & Pavone, Marco & Rajagopal, Ram, 2025. "Optimal coordination of electric buses and battery storage for achieving a 24/7 carbon-free electrified fleet," Applied Energy, Elsevier, vol. 377(PC).
    7. Chiu, Chun-Chih & Huang, Hao & Chen, Ching-Fu, 2024. "A simulation-based optimization approach for the recharging scheduling problem of electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    8. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    9. Nathalie Marion Frieß & Ulrich Pferschy, 2024. "Planning a zero-emission mixed-fleet public bus system with minimal life cycle cost," Public Transport, Springer, vol. 16(1), pages 39-79, March.
    10. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    11. Dolgui, Alexandre & Kovalev, Sergey & Kovalyov, Mikhail Y., 2025. "Scheduling electric vehicle regular charging tasks: A review of deterministic models," European Journal of Operational Research, Elsevier, vol. 325(2), pages 221-232.
    12. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    13. Wang, Zhixin & Zheng, Feifeng & Hamdan, Sadeque & Jouini, Oualid, 2025. "On the spatio-temporal optimization for the charging scheduling of battery electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    14. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    15. Hu, Xiuyu & Li, Hailong & Xie, Chi, 2025. "Optimal charging scheduling of an electric bus fleet with photovoltaic-storage-charging stations," Applied Energy, Elsevier, vol. 390(C).
    16. Wang, Zhixin & Zheng, Feifeng & Hamdan, Sadeque & Jouini, Oualid, 2025. "On the dual-resource overnight charging problem of battery electric buses," Applied Energy, Elsevier, vol. 391(C).
    17. Stokić, Marko & Dimitrijević, Branka, 2025. "Model for electrification of urban public transport lines with supercapacitor buses: A case study of Belgrade," Applied Energy, Elsevier, vol. 377(PD).
    18. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    19. Zhao, Li & Ke, Hanchen & Li, Yuqi & Chen, Yong, 2023. "Research on personalized charging strategy of electric bus under time-varying constraints," Energy, Elsevier, vol. 276(C).
    20. Bao, Zhaoyao & Li, Jiapei & Bai, Xuehan & Xie, Chi & Chen, Zhibin & Xu, Min & Shang, Wen-Long & Li, Hailong, 2023. "An optimal charging scheduling model and algorithm for electric buses," Applied Energy, Elsevier, vol. 332(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:96:y:2025:i:c:s0957178725001535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.