IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v74y2022ics0957178721001156.html
   My bibliography  Save this article

Factors influencing residential water consumption in Wallonia, Belgium

Author

Listed:
  • Bich-Ngoc, Nguyen
  • Prevedello, Cédric
  • Cools, Mario
  • Teller, Jacques

Abstract

Studies on residential water determinants often considered a limited number of possible factors due to lacking data, especially at micro-levels. This study aims to address the simultaneous effects of (1) household characteristics, (2) alternative sources of water, (3) dwelling properties, (4) water appliances, (5) attitudes, and (6) urban form on household water use in Wallonia (Belgium). Results emphasize the importance of household characteristics, use of alternative water sources, and dwelling properties. When compared to these variables, the influence of urban density appears very limited. Accordingly, the often-observed location factors are mainly related to the shared household characteristics, such as composition, income, lot area, or the practice of using rainwater.

Suggested Citation

  • Bich-Ngoc, Nguyen & Prevedello, Cédric & Cools, Mario & Teller, Jacques, 2022. "Factors influencing residential water consumption in Wallonia, Belgium," Utilities Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:juipol:v:74:y:2022:i:c:s0957178721001156
    DOI: 10.1016/j.jup.2021.101281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178721001156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2021.101281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Richter & Rainer Stamminger, 2012. "Water Consumption in the Kitchen – A Case Study in Four European Countries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1639-1649, April.
    2. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    3. Heather E. Campbell & Ryan M. Johnson & Elizabeth Hunt Larson, 2004. "Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1," Review of Policy Research, Policy Studies Organization, vol. 21(5), pages 637-662, September.
    4. Basani, Marcello & Isham, Jonathan & Reilly, Barry, 2008. "The Determinants of Water Connection and Water Consumption: Empirical Evidence from a Cambodian Household Survey," World Development, Elsevier, vol. 36(5), pages 953-968, May.
    5. Jon Franczyk & Heejun Chang, 2009. "Spatial Analysis of Water Use in Oregon, USA, 1985–2005," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 755-774, March.
    6. Elizabeth Wentz & Patricia Gober, 2007. "Determinants of Small-Area Water Consumption for the City of Phoenix, Arizona," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1849-1863, November.
    7. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    8. Saeed Ghavidelfar & Asaad Y. Shamseldin & Bruce W. Melville, 2017. "Future implications of urban intensification on residential water demand," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(10), pages 1809-1824, October.
    9. Ellen M. Pint, 1999. "Household Responses to Increased Water Rates during the California Drought," Land Economics, University of Wisconsin Press, vol. 75(2), pages 246-266.
    10. Mini, C. & Hogue, T.S. & Pincetl, S., 2015. "The effectiveness of water conservation measures on summer residential water use in Los Angeles, California," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safiyeh Tayebi & Bakhtiar Feizizadeh & Saeed Esfandi & Banafsheh Aliabbasi & Seyed Ali Alavi & Aliakbar Shamsipour, 2022. "A Neighborhood-Based Urban Water Carrying Capacity Assessment: Analysis of the Relationship between Spatial-Demographic Factors and Water Consumption Patterns in Tehran, Iran," Land, MDPI, vol. 11(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    2. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    3. Saeed Ghavidelfar & Asaad Y. Shamseldin & Bruce W. Melville, 2017. "A Multi-Scale Analysis of Single-Unit Housing Water Demand Through Integration of Water Consumption, Land Use and Demographic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2173-2186, May.
    4. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    5. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    6. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    7. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    8. Fan, Liangxin & Liu, Guobin & Wang, Fei & Geissen, Violette & Ritsema, Coen J. & Tong, Yan, 2013. "Water use patterns and conservation in households of Wei River Basin, China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 45-53.
    9. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    10. Tchigriaeva, Elena & Lott, Corey & Kimberly, Rollins, 2014. "Modeling effects of multiple conservation policy instruments and exogenous factors on urban residential water demand through household heterogeneity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170605, Agricultural and Applied Economics Association.
    11. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank, vol. 25(2), pages 263-294, August.
    12. Buck, Steven & Nemati, Mehdi & Sunding, David, 2016. "The Welfare Consequences of the 2015 California Drought Mandate: Evidence from New Results on Monthly Water Demand," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236049, Agricultural and Applied Economics Association.
    13. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    14. Roberto Balado-Naves & Marian Garcia-Valiñas & David Roibas, 2023. "Efficiency, perceived prices, and household water demand: A stochastic frontier analysis for the Spanish city of Gijón," Efficiency Series Papers 2023/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    15. Daniel A. Brent, 2016. "Estimating Water Demand Elasticity at the Intensive and Extensive Margin," Departmental Working Papers 2016-06, Department of Economics, Louisiana State University.
    16. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    17. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    18. Roberto Balado-Naves & Marian Garcia-Valiñas & David Roibas, 2023. "Efficiency, perceived prices, and household water demand: A stochastic frontier analysis for the Spanish city of Gijón," Working Papers hal-04147781, HAL.
    19. Brelsford, Christa & Abbott, Joshua K., 2017. "Growing into Water Conservation? Decomposing the Drivers of Reduced Water Consumption in Las Vegas, NV," Ecological Economics, Elsevier, vol. 133(C), pages 99-110.
    20. Diego Maria André & José Carvalho, 2014. "Spatial Determinants of Urban Residential Water Demand in Fortaleza, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2401-2414, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:74:y:2022:i:c:s0957178721001156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.