IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5628-d1682147.html
   My bibliography  Save this article

Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China

Author

Listed:
  • Yubo Zhang

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Yongnan Zhu

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Haihong Li

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Lichuan Wang

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Longlong Zhang

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Haokai Ding

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Hao Wang

    (State Key Laboratory of Water Cycle and Water Security, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

Amid rapid urbanization and climate change, global urban water consumption, particularly household water use, has continuously increased in recent years. However, the impact of climate change on individual and household water use behavior remains insufficiently understood. In this study, we conducted tracking surveys in Beijing, China, to determine the correlation between climatic factors (e.g., temperature, precipitation, and wind) and household water use behaviors and consumption patterns. Furthermore, we proposed a genetic programming-based algorithm to identify and quantify key meteorological factors influencing household and personal water use. The results demonstrated that water use is mainly affected by temperature, particularly the daily maximum (TASMAX) and minimum (TASMIN) near-surface air temperature. In addition, showering and personal cleaning account for the largest proportion of water use and are most affected by meteorological factors. For every 10 °C increase in TASMAX, showering water use nonlinearly increases by 3.46 L/d/person and total water use nonmonotonically increases by 1.14 L/d/person. When TASMIN varies between −10 °C and 0 °C, a significant change in personal cleaning water use is observed. We further employed shared socioeconomic pathway scenarios of the Coupled Model Intercomparison Project 6 to forecast household water use. The results showed that residential water use in Beijing will increase by 21–33% by 2035 compared with 2020. This study offers a groundbreaking perspective and transferable methodology for understanding the effects of climate change on household water use behavior, providing empirical foundations for developing sustainable water resource management strategies.

Suggested Citation

  • Yubo Zhang & Yongnan Zhu & Haihong Li & Lichuan Wang & Longlong Zhang & Haokai Ding & Hao Wang, 2025. "Quantifying the Impact of Climate Change on Household Water Use in Mega Cities: A Case Study of Beijing, China," Sustainability, MDPI, vol. 17(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5628-:d:1682147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salah L. Zubaidi & Sandra Ortega-Martorell & Patryk Kot & Rafid M. Alkhaddar & Mawada Abdellatif & Sadik K. Gharghan & Maytham S. Ahmed & Khalid Hashim, 2020. "A Method for Predicting Long-Term Municipal Water Demands Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1265-1279, February.
    2. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    3. Heather E. Campbell & Ryan M. Johnson & Elizabeth Hunt Larson, 2004. "Prices, Devices, People, or Rules: The Relative Effectiveness of Policy Instruments in Water Conservation1," Review of Policy Research, Policy Studies Organization, vol. 21(5), pages 637-662, September.
    4. Lenka Slavíková & Vítězslav Malý & Michael Rost & Lubomír Petružela & Ondřej Vojáček, 2013. "Impacts of Climate Variables on Residential Water Consumption in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 365-379, January.
    5. Veronika Eyring & William D. Collins & Pierre Gentine & Elizabeth A. Barnes & Marcelo Barreiro & Tom Beucler & Marc Bocquet & Christopher S. Bretherton & Hannah M. Christensen & Katherine Dagon & Davi, 2024. "Pushing the frontiers in climate modelling and analysis with machine learning," Nature Climate Change, Nature, vol. 14(9), pages 916-928, September.
    6. Martina Flörke & Christof Schneider & Robert I. McDonald, 2018. "Water competition between cities and agriculture driven by climate change and urban growth," Nature Sustainability, Nature, vol. 1(1), pages 51-58, January.
    7. V. Kelly Turner & Ariane Middel & Jennifer K. Vanos, 2023. "Shade is an essential solution for hotter cities," Nature, Nature, vol. 619(7971), pages 694-697, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Carmela Aprile & Damiano Fiorillo, 2016. "Water Conservation Behavior and Environmental Concerns," Discussion Papers 6_2016, CRISEI, University of Naples "Parthenope", Italy.
    2. Bich-Ngoc, Nguyen & Prevedello, Cédric & Cools, Mario & Teller, Jacques, 2022. "Factors influencing residential water consumption in Wallonia, Belgium," Utilities Policy, Elsevier, vol. 74(C).
    3. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    4. D. Manouseli & B. Anderson & M. Nagarajan, 2018. "Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 433-447, January.
    5. Diana Fiorillo & Zoran Kapelan & Maria Xenochristou & Francesco De Paola & Maurizio Giugni, 2021. "Assessing the Impact of Climate Change on Future Water Demand using Weather Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1449-1462, March.
    6. Md Haque & Ataur Rahman & Dharma Hagare & Golam Kibria, 2014. "Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1959-1971, May.
    7. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    8. Tapsuwan, Sorada & Peña-Arancibia, Jorge L. & Lazarow, Neil & Albisetti, Melisa & Zheng, Hongxing & Rojas, Rodrigo & Torres-Alferez, Vianney & Chiew, Francis H.S. & Hopkins, Richard & Penton, David J., 2022. "A benefit cost analysis of strategic and operational management options for water management in hyper-arid southern Peru," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    10. Christopher Müller, 2015. "Welfare Effects of Water Pricing in Germany," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-25, December.
    11. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    12. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    13. Simona FRONE, 2012. "Issues On The Role Of Efficient Water Pricing For Sustainable Water Management," Romanian Journal of Economics, Institute of National Economy, vol. 34(1(43)), pages 84-111, June.
    14. Mosisa Teferi Timotewos & Matthias Barjenbruch, 2024. "Examining the Prospects of Residential Water Demand Management Policy Regulations in Ethiopia: Implications for Sustainable Water Resource Management," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    15. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    16. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    17. Dongying Sun & Jiarong Gu & Junyu Chen & Xilin Xia & Zhisong Chen, 2022. "Spatiotemporal differentiation and influencing factors of urban water supply system resilience in the Yangtze River Delta urban agglomeration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 101-126, October.
    18. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    19. Yves Le Gat & Corinne Curt & Caty Werey & Kevin Caillaud & Bénédicte Rulleau & Franck Taillandier, 2025. "Water infrastructure asset management: state of the art and emerging research themes," Post-Print hal-04151980, HAL.
    20. Dustin Garrick & Lucia De Stefano & Laura Turley & Isabel Jorgensen & Ismael Aguilar-Barajas & Barbara Schreiner & Renata de Souza Leão & Erin O’Donnell & Avril Horne, 2019. "Dividing the Water, Sharing the Benefits," World Bank Publications - Reports 32050, The World Bank Group.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5628-:d:1682147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.