IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v68y2020ics0301420720301392.html
   My bibliography  Save this article

Metallic resources in smartphones

Author

Listed:
  • Bookhagen, B.
  • Bastian, D.
  • Buchholz, P.
  • Faulstich, M.
  • Opper, C.
  • Irrgeher, J.
  • Prohaska, T.
  • Koeberl, C.

Abstract

53 metallic elements from smartphones were investigated with regard to metal prices, metal production, and content in comparison to mined ores. The metal content of the 7.42 billion smartphone devices sold from 2012 to 2017 could theoretically maintain the global supply for 91 days for Ga, 73 days for Ta, 23 days for Pd, 14 days for Au, and 6 days for REE. The pure metal value of a single smartphone device for the investigated metals currently sums to 1.13 US $; it averaged at 1.05 US $ from 2012 to 2017 with the highest value of 1.32 US $ in 2012. The Au content is low (16.83 mg per device), yet constitutes the highest value with a current share of approximately 72% of total value for all measured metals, followed by Pd (10%). Approximately 82% of total metal value can be recycled with current standard recycling methods for Au, Cu, Pd, Pt, which only comprise 6 wt% of the total device. The printed circuit board (pcb) contains 90% of the measured Au, 98% of Cu, 99% of Pd, 86% of In, and 93% of Ta. The Au, Pd, Cu, Pt, Ta, In, Ga contents in a smartphone pcb are significantly higher than the metal content in currently mined ores. Magnets contain 96% of the measured REE and 40% of the measured Ga, with higher concentrations than ores for REE and Ga. For Co and Ge, metal content in smartphones (w/o batteries) is lower than in ores.

Suggested Citation

  • Bookhagen, B. & Bastian, D. & Buchholz, P. & Faulstich, M. & Opper, C. & Irrgeher, J. & Prohaska, T. & Koeberl, C., 2020. "Metallic resources in smartphones," Resources Policy, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720301392
    DOI: 10.1016/j.resourpol.2020.101750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420720301392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea & Nuss, Philip & Dewulf, Jo & Nita, Viorel & Peirò, Laura Talens & Vidal-Legaz, Beatriz & Latunussa, Cynthia & Mancini, Lucia & Blagoeva, Darina & Pennington, David & Pellegrini,, 2017. "EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements," Resources Policy, Elsevier, vol. 53(C), pages 12-19.
    2. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    3. Maximilian Ueberschaar & Daniel Dariusch Jalalpoor & Nathalie Korf & Vera Susanne Rotter, 2017. "Potentials and Barriers for Tantalum Recovery from Waste Electric and Electronic Equipment," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 700-714, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Morante-Carballo & Miguel Gurumendi-Noriega & Juan Cumbe-Vásquez & Lady Bravo-Montero & Paúl Carrión-Mero, 2022. "Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador," Sustainability, MDPI, vol. 14(13), pages 1-30, June.
    2. Kelsea A. Schumacher & Martin L. Green, 2023. "Circular Economy in a High-Tech World," Circular Economy and Sustainability,, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Lewicka & Katarzyna Guzik & Krzysztof Galos, 2021. "On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources," Resources, MDPI, vol. 10(5), pages 1-21, May.
    2. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    3. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
    4. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    5. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    6. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.
    7. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    8. Fizaine, Florian, 2015. "Minor metals and organized markets: News highlights about the consequences of establishing a futures market in a thin market with a dual trading price system," Resources Policy, Elsevier, vol. 46(P2), pages 59-70.
    9. Andreas Manhart & Regine Vogt & Michael Priester & Günter Dehoust & Andreas Auberger & Markus Blepp & Peter Dolega & Claudia Kämper & Jürgen Giegrich & Gerhard Schmidt & Jan Kosmol, 2019. "The environmental criticality of primary raw materials – A new methodology to assess global environmental hazard potentials of minerals and metals from mining," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 91-107, April.
    10. Steven B. Young & Shannon Fernandes & Michael O. Wood, 2019. "Jumping the Chain: How Downstream Manufacturers Engage with Deep Suppliers of Conflict Minerals," Resources, MDPI, vol. 8(1), pages 1-24, January.
    11. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    12. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    13. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    14. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2019. "Analyzing Changes in Supply Risks for Abiotic Resources over Time with the ESSENZ Method—A Data Update and Critical Reflection," Resources, MDPI, vol. 8(2), pages 1-16, April.
    15. Nassar, Nedal T., 2017. "Shifts and trends in the global anthropogenic stocks and flows of tantalum," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 233-250.
    16. Shammugam, Shivenes & Rathgeber, Andreas & Schlegl, Thomas, 2019. "Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?," Resources Policy, Elsevier, vol. 61(C), pages 49-66.
    17. Černý, Igor & Vaněk, Michal & Maruszewska, Ewa Wanda & Beneš, Filip, 2021. "How economic indicators impact the EU internal demand for critical raw materials," Resources Policy, Elsevier, vol. 74(C).
    18. Shao, Liuguo & Hu, Wenqin & Yang, Danhui, 2020. "The price relationship between main-byproduct metals from a multiscale nonlinear Granger causality perspective," Resources Policy, Elsevier, vol. 69(C).
    19. Ba, Bocar Samba & Combes-Motel, Pascale & Schwartz, Sonia, 2020. "Challenging pollution and the balance problem from rare earth extraction: how recycling and environmental taxation matter," Environment and Development Economics, Cambridge University Press, vol. 25(6), pages 634-656, December.
    20. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720301392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.