IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v114y2024ics0966692323002375.html
   My bibliography  Save this article

Spatially-aware station based car-sharing demand prediction

Author

Listed:
  • Mühlematter, Dominik J.
  • Wiedemann, Nina
  • Xin, Yanan
  • Raubal, Martin

Abstract

In recent years, car-sharing services have emerged as viable alternatives to private individual mobility, promising more sustainable and resource-efficient, but still comfortable transportation. Research on short-term prediction and optimization methods has improved operations and fleet control of car-sharing services; however, long-term projections and spatial analysis are sparse in the literature. We propose to analyze the average monthly demand in a station-based car-sharing service with spatially-aware learning algorithms that offer high predictive performance as well as interpretability. Our study utilizes a rich set of socio-demographic, location-based (e.g., POIs), and car-sharing-specific features as input, extracted from a large proprietary car-sharing dataset and publicly available datasets. We first compare the performance of different modeling approaches and find that a global Random Forest with geo-coordinates as part of input features achieves the highest predictive performance with an R-squared score of 0.87 on test data. While a local linear model, Geographically Weighted Regression, performs almost on par in terms of out-of-sample prediction accuracy. We further leverage the models to identify spatial and socio-demographic drivers of car-sharing demand. An analysis of the Random Forest via SHAP values, as well as the coefficients of GWR and MGWR models, reveals that besides population density and the car-sharing supply, other spatial features such as surrounding POIs play a major role. In addition, MGWR yields exciting insights into the multiscale heterogeneous spatial distributions of factors influencing car-sharing behaviour. Together, our study offers insights for selecting effective and interpretable methods for diagnosing and planning the placement of car-sharing stations.

Suggested Citation

  • Mühlematter, Dominik J. & Wiedemann, Nina & Xin, Yanan & Raubal, Martin, 2024. "Spatially-aware station based car-sharing demand prediction," Journal of Transport Geography, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002375
    DOI: 10.1016/j.jtrangeo.2023.103765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323002375
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.