IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v86y2019icp16-27.html
   My bibliography  Save this article

The robust multiple-choice multidimensional knapsack problem

Author

Listed:
  • Caserta, Marco
  • Voß, Stefan

Abstract

The multiple-choice multidimensional knapsack problem (MMKP) assumes n sets composed of mutually exclusive items. The goal is to select exactly one item per set, maximizing the overall utility, without violating a family of knapsack constraints. Motivated by recent applications of the MMKP to complex system reliability and quality of service management problems, we propose a robust version. More specifically, we relinquish the assumption that the problem parameters are deterministically known by limiting their values to a pre-specified uncertainty set. Depending on the structure of the variance−covariance matrix used to model the uncertainty, we identify four different cases, leading to robust formulations characterized by second order cone programs. We show how each of these programs is transformed into an equivalent linear program, implying that the use of a robust formulation for the MMKP comes with no extra computational complexity. Finally, using a novel matheuristic designed for the MMKP, we shed lights on the trade-off between the “price of robustness,” i.e., how much worse the objective function value of a robust solution is, compared with the deterministic one, and the “reliability,” i.e., the probability that a robust solution will lead to a feasible scenario for an arbitrary realization of the uncertain parameters.

Suggested Citation

  • Caserta, Marco & Voß, Stefan, 2019. "The robust multiple-choice multidimensional knapsack problem," Omega, Elsevier, vol. 86(C), pages 16-27.
  • Handle: RePEc:eee:jomega:v:86:y:2019:i:c:p:16-27
    DOI: 10.1016/j.omega.2018.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317305777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Cherfi & M. Hifi, 2010. "A column generation method for the multiple-choice multi-dimensional knapsack problem," Computational Optimization and Applications, Springer, vol. 46(1), pages 51-73, May.
    2. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    3. Fabrice Talla Nobibon & Roel Leus, 2014. "Complexity Results and Exact Algorithms for Robust Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 533-552, May.
    4. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Thomas Erlebach & Hans Kellerer & Ulrich Pferschy, 2002. "Approximating Multiobjective Knapsack Problems," Management Science, INFORMS, vol. 48(12), pages 1603-1612, December.
    7. Gao, Chao & Lu, Guanzhou & Yao, Xin & Li, Jinlong, 2017. "An iterative pseudo-gap enumeration approach for the Multidimensional Multiple-choice Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 1-11.
    8. Dolgui, Alexandre & Kovalev, Sergey & Pesch, Erwin, 2015. "Approximate solution of a profit maximization constrained virtual business planning problem," Omega, Elsevier, vol. 57(PB), pages 212-216.
    9. Pisinger, David, 2001. "Budgeting with bounded multiple-choice constraints," European Journal of Operational Research, Elsevier, vol. 129(3), pages 471-480, March.
    10. Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
    11. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    12. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    13. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    14. Chen, Yuning & Hao, Jin-Kao, 2014. "A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 313-322.
    15. Caserta, Marco & Reiners, Torsten, 2016. "A pool-based pattern generation algorithm for logical analysis of data with automatic fine-tuning," European Journal of Operational Research, Elsevier, vol. 248(2), pages 593-606.
    16. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    17. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    18. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    19. Dawei Bai & Tamra Carpenter & John Mulvey, 1997. "Making a Case for Robust Optimization Models," Management Science, INFORMS, vol. 43(7), pages 895-907, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mancini, Simona & Triki, Chefi & Piya, Sujan, 2022. "Optimal selection of touristic packages based on user preferences during sports mega-events," European Journal of Operational Research, Elsevier, vol. 302(3), pages 819-830.
    2. Aslan, Ayse & Ursavas, Evrim & Romeijnders, Ward, 2023. "A Precedence Constrained Knapsack Problem with Uncertain Item Weights for Personalized Learning Systems," Omega, Elsevier, vol. 115(C).
    3. Michael Bortlik & Bernd Heinrich & Daniel Lohninger, 2024. "Service Re-Selection for Disruptive Events in Mobile Environments: A Heuristic Technique for Decision Support at Runtime," Information Systems Frontiers, Springer, vol. 26(3), pages 1063-1090, June.
    4. Fukasawa, Ricardo & Naoum-Sawaya, Joe & Oliveira, Daniel, 2024. "The price-elastic knapsack problem," Omega, Elsevier, vol. 124(C).
    5. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    6. Jaeyoung Yang & Yong-Hyuk Kim & Yourim Yoon, 2022. "A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeyoung Yang & Yong-Hyuk Kim & Yourim Yoon, 2022. "A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    2. Gao, Chao & Lu, Guanzhou & Yao, Xin & Li, Jinlong, 2017. "An iterative pseudo-gap enumeration approach for the Multidimensional Multiple-choice Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 1-11.
    3. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
    4. Diallo, Claver & Venkatadri, Uday & Khatab, Abdelhakim & Liu, Zhuojun, 2018. "Optimal selective maintenance decisions for large serial k-out-of-n: G systems under imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 234-245.
    5. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    6. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    7. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    8. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    9. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    10. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    11. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    12. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    13. Shin, Youngchul & Moon, Ilkyeong, 2023. "Robust building evacuation planning in a dynamic network flow model under collapsible nodes and arcs," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
    15. Fatemeh Keshavarz-Ghorbani & Seyed Hamid Reza Pasandideh, 2022. "A Lagrangian relaxation algorithm for optimizing a bi-objective agro-supply chain model considering CO2 emissions," Annals of Operations Research, Springer, vol. 314(2), pages 497-527, July.
    16. Carvalho, Andréa Nunes & Oliveira, Fabricio & Scavarda, Luiz Felipe, 2016. "Tactical capacity planning in a real-world ETO industry case: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 180(C), pages 158-171.
    17. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    18. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    19. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    20. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:86:y:2019:i:c:p:16-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.