IDEAS home Printed from
   My bibliography  Save this article

The cost of using stationary inventory policies when demand is non-stationary


  • Tunc, Huseyin
  • Kilic, Onur A.
  • Tarim, S. Armagan
  • Eksioglu, Burak


Non-stationary stochastic demands are very common in industrial settings with seasonal patterns, trends, business cycles, and limited-life items. In such cases, the optimal inventory control policies are also non-stationary. However, due to high computational complexity, non-stationary inventory policies are not usually preferred in real-life applications. In this paper, we investigate the cost of using a stationary policy as an approximation to the optimal non-stationary one. Our numerical study points to two important results: (i) Using stationary policies can be very expensive depending on the magnitude of demand variability. (ii) Stationary policies may be efficient approximations to optimal non-stationary policies when demand information contains high uncertainty, setup costs are high and penalty costs are low.

Suggested Citation

  • Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2011. "The cost of using stationary inventory policies when demand is non-stationary," Omega, Elsevier, vol. 39(4), pages 410-415, August.
  • Handle: RePEc:eee:jomega:v:39:y:2011:i:4:p:410-415

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Samuel Karlin, 1960. "Dynamic Inventory Policy with Varying Stochastic Demands," Management Science, INFORMS, vol. 6(3), pages 231-258, April.
    2. Donald L. Iglehart, 1963. "Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem," Management Science, INFORMS, vol. 9(2), pages 259-267, January.
    3. Yue, Jinfeng & Xia, Yu & Tran, Thuhang, 2010. "Selecting sourcing partners for a make-to-order supply chain," Omega, Elsevier, vol. 38(3-4), pages 136-144, June.
    4. Mohebbi, E. & Choobineh, F., 2005. "The impact of component commonality in an assemble-to-order environment under supply and demand uncertainty," Omega, Elsevier, vol. 33(6), pages 472-482, December.
    5. Stephen C. Graves & Sean P. Willems, 2008. "Strategic Inventory Placement in Supply Chains: Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 278-287, March.
    6. Arthur F. Veinott, Jr. & Harvey M. Wagner, 1965. "Computing Optimal (s, S) Inventory Policies," Management Science, INFORMS, vol. 11(5), pages 525-552, March.
    7. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    8. Wang, Kung-Jeng & Wee, Hui-Ming & Gao, Shin-Feng & Chung, Shen-Lian, 2005. "Production and inventory control with chaotic demands," Omega, Elsevier, vol. 33(2), pages 97-106, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ehrenthal, J.C.F. & Honhon, D. & Van Woensel, T., 2014. "Demand seasonality in retail inventory management," European Journal of Operational Research, Elsevier, vol. 238(2), pages 527-539.
    2. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    3. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    4. Kreye, M.E. & Goh, Y.M. & Newnes, L.B. & Goodwin, P., 2012. "Approaches to displaying information to assist decisions under uncertainty," Omega, Elsevier, vol. 40(6), pages 682-692.
    5. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    6. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    7. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    8. Choudhary, Devendra & Shankar, Ravi, 2015. "The value of VMI beyond information sharing in a single supplier multiple retailers supply chain under a non-stationary (Rn, Sn) policy," Omega, Elsevier, vol. 51(C), pages 59-70.
    9. repec:eee:proeco:v:189:y:2017:i:c:p:86-96 is not listed on IDEAS
    10. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    11. Lagodimos, A.G. & Christou, I.T. & Skouri, K., 2012. "Computing globally optimal (s,S,T) inventory policies," Omega, Elsevier, vol. 40(5), pages 660-671.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:39:y:2011:i:4:p:410-415. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.