IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v112y2022ics0305048322000986.html
   My bibliography  Save this article

On the impact of adjusting the minimum life on receipt (MLOR) criterion in food supply chains

Author

Listed:
  • Santos, Maria João
  • Martins, Sara
  • Amorim, Pedro
  • Almada-Lobo, Bernardo

Abstract

The Minimum Life on Receipt (MLOR) is a widely used rule that imposes the minimum remaining age a food product must be delivered by the producer to the retailer. In practice, this rule is set by retailers and it is fixed, around 2/3 of the age of products regardless their shelf life. In this work, we study single and two echelon make-to-stock production-inventory problems for fixed-lifetime perishables. Mixed-integer linear optimization models are developed considering the MLOR rule both as decision variable and fixed parameter. When the MLOR rule is a variable, it is considered either a sole decision of the producer or a collaborative decision between retailer and producer. The goal of this work is to compare the supply chain performance considering this innovative setting of optimal MLOR (as a variable) against the traditional setting of fixed MLOR rule. The computational results suggest that allowing flexible MLOR rules according to the shelf life of products and the operational requirements of the producer benefit both entities in the supply chain. In particular, reducing the MLOR requirement in up to 12% does not interfere substantially with the average freshness of products arriving to the retailer, but reduces extensively surplus/waste generation at the producer while keeping a small amount of waste at the retailer.

Suggested Citation

  • Santos, Maria João & Martins, Sara & Amorim, Pedro & Almada-Lobo, Bernardo, 2022. "On the impact of adjusting the minimum life on receipt (MLOR) criterion in food supply chains," Omega, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000986
    DOI: 10.1016/j.omega.2022.102691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    2. Alvarez, Aldair & Miranda, Pedro & Rohmer, S.U.K., 2022. "Production routing for perishable products," Omega, Elsevier, vol. 111(C).
    3. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    4. Jaekwon Chung & Dong Li, 2014. "A simulation of the impacts of dynamic price management for perishable foods on retailer performance in the presence of need-driven purchasing consumers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(8), pages 1177-1188, August.
    5. Jing, Fuying & Chao, Xiangrui, 2022. "Forecast horizons for a two-echelon dynamic lot-sizing problem," Omega, Elsevier, vol. 110(C).
    6. Mark Ferguson & Michael E. Ketzenberg, 2006. "Information Sharing to Improve Retail Product Freshness of Perishables," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 57-73, March.
    7. Wang, Xiaojun & Li, Dong, 2012. "A dynamic product quality evaluation based pricing model for perishable food supply chains," Omega, Elsevier, vol. 40(6), pages 906-917.
    8. Farshbaf-Geranmayeh, Amir & Zaccour, Georges, 2021. "Pricing and advertising in a supply chain in the presence of strategic consumers," Omega, Elsevier, vol. 101(C).
    9. Garrone, Paola & Melacini, Marco & Perego, Alessandro, 2014. "Opening the black box of food waste reduction," Food Policy, Elsevier, vol. 46(C), pages 129-139.
    10. Broekmeulen, Rob A.C.M. & van Donselaar, Karel H., 2019. "Quantifying the potential to improve on food waste, freshness and sales for perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 209(C), pages 265-273.
    11. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    12. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    13. Buisman, M.E. & Haijema, R. & Bloemhof-Ruwaard, J.M., 2019. "Discounting and dynamic shelf life to reduce fresh food waste at retailers," International Journal of Production Economics, Elsevier, vol. 209(C), pages 274-284.
    14. Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arzum Akkas & Dorothee Honhon, 2023. "Determining maximum shipping age requirements for shelf life and food waste management," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2173-2188, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganguly, Subhamoy & Robb, David J., 2022. "An analytical model to characterize consumption and wastage of fresh fruit and vegetables in households," European Journal of Operational Research, Elsevier, vol. 300(1), pages 151-163.
    2. Lejarza, Fernando & Baldea, Michael, 2022. "An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products," European Journal of Operational Research, Elsevier, vol. 297(3), pages 890-903.
    3. Kabadurmus, Ozgur & Kayikci, Yaşanur & Demir, Sercan & Koc, Basar, 2023. "A data-driven decision support system with smart packaging in grocery store supply chains during outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Guowei Liu & Jianxiong Zhang & Wansheng Tang, 2015. "Joint dynamic pricing and investment strategy for perishable foods with price-quality dependent demand," Annals of Operations Research, Springer, vol. 226(1), pages 397-416, March.
    5. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    6. Gaukler, Gary M. & Zuidwijk, Rob A. & Ketzenberg, Michael E., 2023. "The value of time and temperature history information for the distribution of perishables," European Journal of Operational Research, Elsevier, vol. 310(2), pages 627-639.
    7. Timothy J. Richards & Stephen F. Hamilton, 2022. "Inventory management and loss in beer retailing," Agribusiness, John Wiley & Sons, Ltd., vol. 38(3), pages 461-485, July.
    8. Shuai Yang & Yujie Xiao & Yong-Hong Kuo, 2017. "The Supply Chain Design for Perishable Food with Stochastic Demand," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
    9. Mohamed Ben-Daya & Elkafi Hassini & Zied Bahroun & Hafsa Saeed, 2023. "Optimal pricing in the presence of IoT investment and quality-dependent demand," Annals of Operations Research, Springer, vol. 324(1), pages 869-892, May.
    10. Ming Luo & GuoHua Zhou & Hao Xu, 2022. "RETRACTED ARTICLE: Three-tier supply chain on temperature control for fresh agricultural products using new differential game model under two decision-making situations," Operations Management Research, Springer, vol. 15(3), pages 1028-1047, December.
    11. Shuai Yang & Yujie Xiao & Yan Zheng & Yan Liu, 2017. "The Green Supply Chain Design and Marketing Strategy for Perishable Food Based on Temperature Control," Sustainability, MDPI, vol. 9(9), pages 1-8, August.
    12. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    13. Dong Li & Xiaojun Wang, 2017. "Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5127-5141, September.
    14. Stüve, David & van der Meer, Robert & Lütke Entrup, Matthias & Agha, Mouhamad Shaker Ali, 2020. "Supply chain planning in the food industry," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 317-353, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    15. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    16. Pervin Ersoy & Gülmüş Börühan & Sachin Kumar Mangla & Jorge Hernandez Hormazabal & Yigit Kazancoglu & Çisem Lafcı, 2022. "Impact of information technology and knowledge sharing on circular food supply chains for green business growth," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 1875-1904, July.
    17. Lijing Zhu, 2017. "Economic Analysis of a Traceability System for a Two-Level Perishable Food Supply Chain," Sustainability, MDPI, vol. 9(5), pages 1-16, April.
    18. Yujie Xiao & Shuai Yang, 2016. "The Retail Chain Design for Perishable Food: The Case of Price Strategy and Shelf Space Allocation," Sustainability, MDPI, vol. 9(1), pages 1-11, December.
    19. Pan, Fei & Zhou, Wei & Fan, Tijun & Li, Shuxia & Zhang, Chong, 2021. "Deterioration rate variation risk for sustainable cross-docking service operations," International Journal of Production Economics, Elsevier, vol. 232(C).
    20. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.