IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On rank correlation measures for non-continuous random variables

  • Neslehov√°, Johanna
Registered author(s):

    For continuous random variables, many dependence concepts and measures of association can be expressed in terms of the corresponding copula only and are thus independent of the marginal distributions. This interrelationship generally fails as soon as there are discontinuities in the marginal distribution functions. In this paper, we consider an alternative transformation of an arbitrary random variable to a uniformly distributed one. Using this technique, the class of all possible copulas in the general case is investigated. In particular, we show that one of its members--the standard extension copula introduced by Schweizer and Sklar--captures the dependence structures in an analogous way the unique copula does in the continuous case. Furthermore, we consider measures of concordance between arbitrary random variables and obtain generalizations of Kendall's tau and Spearman's rho that correspond to the sample version of these quantities for empirical distributions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 3 (March)
    Pages: 544-567

    in new window

    Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:544-567
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Marco Scarsini, 1984. "On measures of concordance," Post-Print hal-00542380, HAL.
    2. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    3. Marco Scarsini, 1984. "Strong measures of concordance and convergence in probability," Post-Print hal-00542387, HAL.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:544-567. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.