IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v200y2024ics0047259x23000957.html
   My bibliography  Save this article

Statistical performance of quantile tensor regression with convex regularization

Author

Listed:
  • Lu, Wenqi
  • Zhu, Zhongyi
  • Li, Rui
  • Lian, Heng

Abstract

In this paper, we consider high-dimensional quantile tensor regression using a general convex decomposable regularizer and analyze the statistical performances of the estimator. The rates are stated in terms of the intrinsic dimension of the estimation problem, which is, roughly speaking, the dimension of the smallest subspace that contains the true coefficient. Previously, convex regularized tensor regression has been studied with a least squares loss, Gaussian tensorial predictors and Gaussian errors, with rates that depend on the Gaussian width of a convex set. Our results extend the previous work to nonsmooth quantile loss. To deal with the non-Gaussian setting, we use the concept of Rademacher complexity with appropriate concentration inequalities instead of the Gaussian width. For the multi-linear nuclear norm penalty, our Orlicz norm bound for the operator norm of a random matrix may be of independent interest. We validate the theoretical guarantees in numerical experiments. We also demonstrate advantage of quantile regression over mean regression, and compare the performance of convex regularization method and nonconvex decomposition method in solving quantile tensor regression problem in simulation studies.

Suggested Citation

  • Lu, Wenqi & Zhu, Zhongyi & Li, Rui & Lian, Heng, 2024. "Statistical performance of quantile tensor regression with convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000957
    DOI: 10.1016/j.jmva.2023.105249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.