Statistical inference on the significance of rows and columns for matrix-valued data in an additive model
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-023-00852-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Yimei Li & Hongtu Zhu & Dinggang Shen & Weili Lin & John H. Gilmore & Joseph G. Ibrahim, 2011. "Multiscale adaptive regression models for neuroimaging data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 559-578, September.
- Yuqing Pan & Qing Mai & Xin Zhang, 2019. "Covariate-Adjusted Tensor Classification in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1305-1319, July.
- Niu, Lu & Liu, Xiumin & Zhao, Junlong, 2020. "Robust estimator of the correlation matrix with sparse Kronecker structure for a high-dimensional matrix-variate," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
- Lexin Li & Xin Zhang, 2017. "Parsimonious Tensor Response Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1131-1146, July.
- Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
- Chen, Chia-Cheng & Barnhart, Huiman X., 2008. "Comparison of ICC and CCC for assessing agreement for data without and with replications," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 554-564, December.
- Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Bei Jiang & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2020. "A Bayesian approach to joint modeling of matrix‐valued imaging data and treatment outcome with applications to depression studies," Biometrics, The International Biometric Society, vol. 76(1), pages 87-97, March.
- Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
- Zhao, Junlong & Niu, Lu & Zhan, Shushi, 2017. "Trace regression model with simultaneously low rank and row(column) sparse parameter," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 1-18.
- Hua Zhou & Lexin Li, 2014. "Regularized matrix regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 463-483, March.
- Wei Hu & Tianyu Pan & Dehan Kong & Weining Shen, 2021. "Nonparametric matrix response regression with application to brain imaging data analysis," Biometrics, The International Biometric Society, vol. 77(4), pages 1227-1240, December.
- Anru Zhang & Rungang Han, 2019. "Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1708-1725, October.
- Jian Kang & Brian J Reich & Ana-Maria Staicu, 2018. "Scalar-on-image regression via the soft-thresholded Gaussian process," Biometrika, Biometrika Trust, vol. 105(1), pages 165-184.
- J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
- Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
- Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
- Zhu, Hongtu & Chen, Yasheng & Ibrahim, Joseph G. & Li, Yimei & Hall, Colin & Lin, Weili, 2009. "Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1203-1212.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
- Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
- Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
- Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
- Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
- Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
- He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
- Tian, Zhentao & Zhang, Zhongzhan, 2025. "Quantile feature screening for infinite dimensional data under FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
- Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
- Yang, Baoying & Yin, Xiangrong & Zhang, Nan, 2019. "Sufficient variable selection using independence measures for continuous response," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 480-493.
- Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
- Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Yan, Xiaodong & Tang, Niansheng & Xie, Jinhan & Ding, Xianwen & Wang, Zhiqiang, 2018. "Fused mean–variance filter for feature screening," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 18-32.
- Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
- Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
- Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
- Congran Yu & Hengjian Cui, 2025. "Feature screening via false discovery rate control for linear model with multivariate responses," Statistical Papers, Springer, vol. 66(2), pages 1-29, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:3:d:10.1007_s11749-023-00852-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.