IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i519p1009-1021.html
   My bibliography  Save this article

MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction

Author

Listed:
  • Hongtu Zhu
  • Dan Shen
  • Xuewei Peng
  • Leo Yufeng Liu

Abstract

We propose a multiscale weighted principal component regression (MWPCR) framework for the use of high-dimensional features with strong spatial features (e.g., smoothness and correlation) to predict an outcome variable, such as disease status. This development is motivated by identifying imaging biomarkers that could potentially aid detection, diagnosis, assessment of prognosis, prediction of response to treatment, and monitoring of disease status, among many others. The MWPCR can be regarded as a novel integration of principal components analysis (PCA), kernel methods, and regression models. In MWPCR, we introduce various weight matrices to prewhitten high-dimensional feature vectors, perform matrix decomposition for both dimension reduction and feature extraction, and build a prediction model by using the extracted features. Examples of such weight matrices include an importance score weight matrix for the selection of individual features at each location and a spatial weight matrix for the incorporation of the spatial pattern of feature vectors. We integrate the importance of score weights with the spatial weights to recover the low-dimensional structure of high-dimensional features. We demonstrate the utility of our methods through extensive simulations and real data analyses of the Alzheimer’s disease neuroimaging initiative (ADNI) dataset. Supplementary materials for this article are available online.

Suggested Citation

  • Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1009-1021
    DOI: 10.1080/01621459.2016.1261710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1261710
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1261710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yimei Li & Hongtu Zhu & Dinggang Shen & Weili Lin & John H. Gilmore & Joseph G. Ibrahim, 2011. "Multiscale adaptive regression models for neuroimaging data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 559-578, September.
    2. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    3. Huang, Jianhua Z. & Shen, Haipeng & Buja, Andreas, 2009. "The Analysis of Two-Way Functional Data Using Two-Way Regularized Singular Value Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1609-1620.
    4. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    5. Genevera I. Allen & Logan Grosenick & Jonathan Taylor, 2014. "A Generalized Least-Square Matrix Decomposition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 145-159, March.
    6. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    7. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    8. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    9. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    10. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiumin Liu & Lu Niu & Junlong Zhao, 2023. "Statistical inference on the significance of rows and columns for matrix-valued data in an additive model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 785-828, September.
    2. Yongshuai Chen & Baosheng Liang, 2025. "Sure Independence Screening for Ultrahigh-Dimensional Additive Model with Multivariate Response," Mathematics, MDPI, vol. 13(10), pages 1-17, May.
    3. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    5. Firuz Kamalov & Hana Sulieman & Ayman Alzaatreh & Maher Emarly & Hasna Chamlal & Murodbek Safaraliev, 2025. "Mathematical Methods in Feature Selection: A Review," Mathematics, MDPI, vol. 13(6), pages 1-29, March.
    6. Shuaishuai Chen & Jun Lu, 2023. "Quantile-Composited Feature Screening for Ultrahigh-Dimensional Data," Mathematics, MDPI, vol. 11(10), pages 1-21, May.
    7. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    8. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    9. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    10. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    11. Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    12. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    13. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    14. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    15. Abhik Ghosh & Erica Ponzi & Torkjel Sandanger & Magne Thoresen, 2023. "Robust sure independence screening for nonpolynomial dimensional generalized linear models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1232-1262, September.
    16. Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
    17. Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    18. Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
    19. Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    20. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1009-1021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.