IDEAS home Printed from
   My bibliography  Save this article

Feature Screening via Distance Correlation Learning


  • Runze Li
  • Wei Zhong
  • Liping Zhu


This article is concerned with screening features in ultrahigh-dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS). The DC-SIS can be implemented as easily as the sure independence screening (SIS) procedure based on the Pearson correlation proposed by Fan and Lv. However, the DC-SIS can significantly improve the SIS. Fan and Lv established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings, including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh-dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. A numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real-data example.

Suggested Citation

  • Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1129-1139 DOI: 10.1080/01621459.2012.695654

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hilary W. Hoynes & Diane Whitmore Schanzenbach, 2009. "Consumption Responses to In-Kind Transfers: Evidence from the Introduction of the Food Stamp Program," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 109-139, October.
    2. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    3. Nord, Mark & Andrews, Margaret S. & Carlson, Steven, 2008. "Household Food Security in the United States, 2007," Economic Research Report 56483, United States Department of Agriculture, Economic Research Service.
    4. Moffitt, Robert, 1983. "An Economic Model of Welfare Stigma," American Economic Review, American Economic Association, vol. 73(5), pages 1023-1035, December.
    5. Brent Kreider & John Pepper, 2008. "Inferring disability status from corrupt data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 329-349.
    6. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    7. Craig Gundersen & Victor Oliveira, 2001. "The Food Stamp Program and Food Insufficiency," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(4), pages 875-887.
    8. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    9. Kaushal, N., 2007. "Do food stamps cause obesity?: Evidence from immigrant experience," Journal of Health Economics, Elsevier, vol. 26(5), pages 968-991, September.
    10. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    11. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    12. John V. Pepper, 2000. "The Intergenerational Transmission Of Welfare Receipt: A Nonparametric Bounds Analysis," The Review of Economics and Statistics, MIT Press, vol. 82(3), pages 472-488, August.
    13. Brent Kreider & Steven C. Hill, 2009. "Partially Identifying Treatment Effects with an Application to Covering the Uninsured," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    14. Bhattacharya, Jayanta & Currie, Janet & Haider, Steven, 2004. "Poverty, food insecurity, and nutritional outcomes in children and adults," Journal of Health Economics, Elsevier, vol. 23(4), pages 839-862, July.
    15. Craig Gundersen & Susan Offutt, 2005. "Farm Poverty and Safety Nets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 885-899.
    16. Anne Case & Darren Lubotsky & Christina Paxson, 2002. "Economic Status and Health in Childhood: The Origins of the Gradient," American Economic Review, American Economic Association, vol. 92(5), pages 1308-1334, December.
    17. Chad D. Meyerhoefer & Yuriy Pylypchuk, 2008. "Does Participation in the Food Stamp Program Increase the Prevalence of Obesity and Health Care Spending?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 287-305.
    18. Molinari, Francesca, 2010. "Missing Treatments," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 82-95.
    19. Janet Currie, 2003. "U.S. Food and Nutrition Programs," NBER Chapters,in: Means-Tested Transfer Programs in the United States, pages 199-290 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:csdana:v:119:y:2018:i:c:p:74-85 is not listed on IDEAS
    2. Xiang-Jie Li & Xue-Jun Ma & Jing-Xiao Zhang, 2017. "Robust feature screening for varying coefficient models via quantile partial correlation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 17-49, January.
    3. Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
    4. Huang, Qiming & Zhu, Yu, 2016. "Model-free sure screening via maximum correlation," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 89-106.
    5. Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
    6. repec:wyi:journl:002212 is not listed on IDEAS
    7. Yang, Hu & Guo, Chaohui & Lv, Jing, 2015. "SCAD penalized rank regression with a diverging number of parameters," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 321-333.
    8. repec:eee:ecolet:v:156:y:2017:i:c:p:162-167 is not listed on IDEAS
    9. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    10. repec:eee:csdana:v:114:y:2017:i:c:p:88-104 is not listed on IDEAS
    11. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    12. repec:eee:stapro:v:126:y:2017:i:c:p:238-243 is not listed on IDEAS
    13. repec:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0629-9 is not listed on IDEAS
    14. repec:eee:csdana:v:119:y:2018:i:c:p:118-138 is not listed on IDEAS
    15. Li, Yujie & Li, Gaorong & Lian, Heng & Tong, Tiejun, 2017. "Profile forward regression screening for ultra-high dimensional semiparametric varying coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 133-150.
    16. Lin, Lu & Sun, Jing & Zhu, Lixing, 2013. "Nonparametric feature screening," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 162-174.
    17. Ma, Xuejun & Zhang, Jingxiao, 2016. "Robust model-free feature screening via quantile correlation," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 472-480.
    18. Lai, Peng & Liu, Yiming & Liu, Zhi & Wan, Yi, 2017. "Model free feature screening for ultrahigh dimensional data with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 201-216.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1129-1139. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.