IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v144y2016icp25-37.html

Testing covariates in high dimension linear regression with latent factors

Author

Listed:
  • Lan, Wei
  • Ding, Yue
  • Fang, Zheng
  • Fang, Kuangnan

Abstract

We propose here both F-test and z-test (or t-test) for testing global significance and individual effect of each single predictor respectively in high dimension regression model when the explanatory variables follow a latent factor structure (Wang, 2012). Under the null hypothesis, together with fairly mild conditions on the explanatory variables and latent factors, we show that the proposed F-test and t-test are asymptotically distributed as weighted chi-square and standard normal distribution respectively. That leads to quite different test statistics and inference procedures, as compared with that of Zhong and Chen (2011) when the explanatory variables are weakly dependent. Moreover, based on the p-value of each predictor, the method of Storey et al. (2004) can be used to implement the multiple testing procedure, and we can achieve consistent model selection as long as we can select the threshold value appropriately. All the results are further supported by extensive Monte Carlo simulation studies. The practical utility of the two proposed tests are illustrated via a real data example for index funds tracking in China stock market.

Suggested Citation

  • Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
  • Handle: RePEc:eee:jmvana:v:144:y:2016:i:c:p:25-37
    DOI: 10.1016/j.jmva.2015.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1500264X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. H. Wang, 2012. "Factor profiled sure independence screening," Biometrika, Biometrika Trust, vol. 99(1), pages 15-28.
    2. Wei Lan & Hansheng Wang & Chih-Ling Tsai, 2014. "Testing covariates in high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 279-301, April.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Jelle J. Goeman & Hans C. van Houwelingen & Livio Finos, 2011. "Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control," Biometrika, Biometrika Trust, vol. 98(2), pages 381-390.
    5. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    6. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    7. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    8. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    9. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    10. Golubev, Georgi & Härdle, Wolfgang, 2000. "On adaptive estimation in partial linear models," SFB 373 Discussion Papers 2000,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    12. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    13. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    14. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    15. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    16. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    2. Du, Lilun & Lan, Wei & Luo, Ronghua & Zhong, Pingshou, 2018. "Factor-adjusted multiple testing of correlations," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 34-47.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    5. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    6. Hongwei Shi & Weichao Yang & Bowen Sun & Xu Guo, 2025. "Tests for high-dimensional partially linear regression models," Statistical Papers, Springer, vol. 66(3), pages 1-23, April.
    7. Daniele Massacci & Lucio Sarno & Lorenzo Trapani & Pierluigi Vallarino, 2025. "A general randomized test for Alpha," Papers 2507.17599, arXiv.org.
    8. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    9. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    10. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    11. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2020. "Estimation of large dimensional conditional factor models in finance," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 219-282, Elsevier.
    12. Lin, Lu & Zhu, Lixing & Gai, Yujie, 2016. "Inference for biased models: A quasi-instrumental variable approach," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 22-36.
    13. Wu, Jianhong, 2019. "Detecting irrelevant variables in possible proxies for the latent factors in macroeconomics and finance," Economics Letters, Elsevier, vol. 176(C), pages 60-63.
    14. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    15. Brian Godwin Lim & Dominic Dayta & Benedict Ryan Tiu & Renzo Roel Tan & Len Patrick Dominic Garces & Kazushi Ikeda, 2025. "Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange," Papers 2510.15938, arXiv.org.
    16. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    17. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    18. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    19. Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
    20. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:144:y:2016:i:c:p:25-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.