IDEAS home Printed from
   My bibliography  Save this article

Weighted-mean trimming of multivariate data


  • Dyckerhoff, Rainer
  • Mosler, Karl


A general notion of trimmed regions for empirical distributions in d-space is introduced. The regions are called weighted-mean trimmed regions. They are continuous in the data as well as in the trimming parameter. Further, these trimmed regions have many other attractive properties. In particular they are subadditive and monotone which makes it possible to construct multivariate measures of risk based on these regions. Special cases include the zonoid trimming and the ECH (expected convex hull) trimming. These regions can be exactly calculated for any dimension. Finally, the notion of weighted-mean trimmed regions extends to probability distributions in d-space, and a law of large numbers applies.

Suggested Citation

  • Dyckerhoff, Rainer & Mosler, Karl, 2011. "Weighted-mean trimming of multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 405-421, March.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:405-421

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Dyckerhoff, Rainer & Mosler, Karl, 2012. "Weighted-mean regions of a probability distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 318-325.
    2. Cascos, Ignacio & López-Díaz, Miguel, 2012. "Trimmed regions induced by parameters of a probability," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 306-318.
    3. Walter Krämer, 2016. "Walter Krämer: Interview mit Karl Mosler," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 63-71, February.
    4. Bazovkin, Pavel & Mosler, Karl, 2011. "Stochastic linear programming with a distortion risk constraint," Discussion Papers in Econometrics and Statistics 6/11, University of Cologne, Institute of Econometrics and Statistics.
    5. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:405-421. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.