IDEAS home Printed from https://ideas.repec.org/p/zbw/ucdpse/611.html
   My bibliography  Save this paper

Stochastic linear programming with a distortion risk constraint

Author

Listed:
  • Bazovkin, Pavel
  • Mosler, Karl

Abstract

Linear optimization problems are investigated whose parameters are uncertain. We apply coherent distortion risk measures to capture the violation of restrictions. Such a model turns out to be appropriate for many applications and, principally, for the mean-risk portfolio selection problem. Each risk constraint induces an uncertainty set of coefficients, which comes out to be a weighted-mean trimmed region. We consider a problem with a single constraint. Given an external sample of the coefficients, the uncertainty set is a convex polytope that can be exactly calculated. If the sample is i.i.d. from a general probability distribution, the solution of the stochastic linear program (SLP) is a consistent estimator of the SLP solution with respect to the underlying probability. An efficient geometrical algorithm is proposed to solve the SLP.

Suggested Citation

  • Bazovkin, Pavel & Mosler, Karl, 2011. "Stochastic linear programming with a distortion risk constraint," Discussion Papers in Econometrics and Statistics 6/11, University of Cologne, Institute of Econometrics and Statistics.
  • Handle: RePEc:zbw:ucdpse:611
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/67613/1/684350238.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
    3. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    5. Dyckerhoff, Rainer & Mosler, Karl, 2012. "Weighted-mean regions of a probability distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 318-325.
    6. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    7. Dyckerhoff, Rainer & Mosler, Karl, 2011. "Weighted-mean trimming of multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 405-421, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Postek, K.S. & den Hertog, D. & Melenberg, B., 2014. "Tractable Counterparts of Distributionally Robust Constraints on Risk Measures," Discussion Paper 2014-031, Tilburg University, Center for Economic Research.
    2. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Discussion Paper 2015-047, Tilburg University, Center for Economic Research.
    3. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ucdpse:611. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/sxkoede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.