Exact computation of bivariate projection depth and the Stahel-Donoho estimator
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
- Rousseeuw, Peter J., 1993. "A resampling design for computing high-breakdown regression," Statistics & Probability Letters, Elsevier, vol. 18(2), pages 125-128, September.
- Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Xiaohui & Zuo, Yijun & Wang, Zhizhong, 2013. "Exactly computing bivariate projection depth contours and median," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 1-11.
- Van Aelst, S. & Vandervieren, E. & Willems, G., 2012. "A Stahel–Donoho estimator based on huberized outlyingness," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 531-542.
- Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Maicol Ochoa & Ignacio Cascos, 2022. "Data Depth and Multiple Output Regression, the Distorted M -Quantiles Approach," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
- Zuo, Yijun, 2013. "Multidimensional medians and uniqueness," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 82-88.
- Shao, Wei & Zuo, Yijun, 2012. "Simulated annealing for higher dimensional projection depth," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4026-4036.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
- Nolan, D., 1999. "On min-max majority and deepest points," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 325-333, July.
- Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
- Pavel Bazovkin & Karl Mosler, 2015. "A general solution for robust linear programs with distortion risk constraints," Annals of Operations Research, Springer, vol. 229(1), pages 103-120, June.
- Bazovkin, Pavel & Mosler, Karl, 2012.
"An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
- Bazovkin, Pavel & Mosler, Karl, 2010. "An exact algorithm for weighted-mean trimmed regions in any dimension," Discussion Papers in Econometrics and Statistics 6/10, University of Cologne, Institute of Econometrics and Statistics.
- Cascos Fernández, Ignacio & Molchanov, Ilya, 2013. "Multivariate risk measures : a constructive approach based on selections," DES - Working Papers. Statistics and Econometrics. WS ws130101, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Cascos Fernández, Ignacio & Ochoa Arellano, Maicol Jesús, 2019. "Multivariate expectile trimming and the BExPlot," DES - Working Papers. Statistics and Econometrics. WS 28434, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
- Masse, Jean-Claude & Plante, Jean-Francois, 2003. "A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 1-26, February.
- Rand Wilcox, 2004. "Inferences Based on a Skipped Correlation Coefficient," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(2), pages 131-143.
- Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
- Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.
- Aloupis, Greg & Cortes, Carmen & Gomez, Francisco & Soss, Michael & Toussaint, Godfried, 2002. "Lower bounds for computing statistical depth," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 223-229, August.
- Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008.
"Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth,"
Working Papers ECARES
2008_042, ULB -- Universite Libre de Bruxelles.
- Marc Hallin & Davy Paindaveine & Miroslav Šiman, 2010. "Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth," ULB Institutional Repository 2013/127979, ULB -- Universite Libre de Bruxelles.
- Torres Díaz, Raúl Andrés & Michele, Carlo de & Lillo Rodríguez, Rosa Elvira & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ilya Molchanov & Anja Muhlemann, 2019. "Nonlinear expectations of random sets," Papers 1903.04901, arXiv.org.
- Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
- Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1173-1179. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i3p1173-1179.html