IDEAS home Printed from
   My bibliography  Save this article

Boundary kernels for adaptive density estimators on regions with irregular boundaries


  • Marshall, Jonathan C.
  • Hazelton, Martin L.


In some applications of kernel density estimation the data may have a highly non-uniform distribution and be confined to a compact region. Standard fixed bandwidth density estimates can struggle to cope with the spatially variable smoothing requirements, and will be subject to excessive bias at the boundary of the region. While adaptive kernel estimators can address the first of these issues, the study of boundary kernel methods has been restricted to the fixed bandwidth context. We propose a new linear boundary kernel which reduces the asymptotic order of the bias of an adaptive density estimator at the boundary, and is simple to implement even on an irregular boundary. The properties of this adaptive boundary kernel are examined theoretically. In particular, we demonstrate that the asymptotic performance of the density estimator is maintained when the adaptive bandwidth is defined in terms of a pilot estimate rather than the true underlying density. We examine the performance for finite sample sizes numerically through analysis of simulated and real data sets.

Suggested Citation

  • Marshall, Jonathan C. & Hazelton, Martin L., 2010. "Boundary kernels for adaptive density estimators on regions with irregular boundaries," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 949-963, April.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:949-963

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. H. G. Müller & U. Stadtmüller, 1999. "Multivariate boundary kernels and a continuous least squares principle," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 439-458.
    2. Ezcurra, Roberto, 2007. "Is there cross-country convergence in carbon dioxide emissions?," Energy Policy, Elsevier, vol. 35(2), pages 1363-1372, February.
    3. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    4. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    5. Sain, Stephan R., 2002. "Multivariate locally adaptive density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 165-186, April.
    6. Hazelton, Martin L. & Marshall, Jonathan C., 2009. "Linear boundary kernels for bivariate density estimation," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 999-1003, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:4:p:949-963. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.