IDEAS home Printed from https://ideas.repec.org/a/eee/jcjust/v96y2025ics0047235224001867.html
   My bibliography  Save this article

Artificial intelligence as a tool for detecting deception in 911 homicide calls

Author

Listed:
  • Markey, Patrick M.
  • Goldman, Samantha
  • Dapice, Jennie
  • Saj, Sofia
  • Ceynek, Saadet
  • Nicolas, Tia
  • Trollip, Lila

Abstract

This paper investigates the application of Artificial Intelligence (AI), specifically the use of a Large Language Model (ChatGPT), in analyzing 911 calls to identify deceptive reports of homicides. The study sampled an equal number of False Allegation Callers (FACs) and True Report Callers (TRCs), categorized through judicial outcomes. Calls were processed using ChatGPT, which assessed 86 behavioral cues from 142 callers. Using a random forest model with k-fold cross-validation and repeated sampling, the analysis achieved an accuracy rate of 70.68 %, with sensitivity and specificity rates at 71.44 % and 69.92 %, respectively. The study revealed distinct behavioral patterns that differentiate FACs and TRCs. AI characterized FACs as somewhat unhelpful and emotional, displaying behaviors such as awkwardness, unintelligibility, moodiness, uncertainty, making situations more complicated, expressing regret, and self-dramatizing. In contrast, AI identified TRCs as helpful and composed, marked by responsiveness, cooperativeness, a focus on relevant issues, consistency, plausibility in their messages, and candidness.

Suggested Citation

  • Markey, Patrick M. & Goldman, Samantha & Dapice, Jennie & Saj, Sofia & Ceynek, Saadet & Nicolas, Tia & Trollip, Lila, 2025. "Artificial intelligence as a tool for detecting deception in 911 homicide calls," Journal of Criminal Justice, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:jcjust:v:96:y:2025:i:c:s0047235224001867
    DOI: 10.1016/j.jcrimjus.2024.102337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047235224001867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcrimjus.2024.102337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Richard Berk & Lawrence Sherman & Geoffrey Barnes & Ellen Kurtz & Lindsay Ahlman, 2009. "Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 191-211, January.
    2. Jeffrey Grogger & Sean Gupta & Ria Ivandic & Tom Kirchmaier, 2021. "Comparing Conventional and Machine‐Learning Approaches to Risk Assessment in Domestic Abuse Cases," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 18(1), pages 90-130, March.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Patrícia Martinková & Dan Goldhaber & Elena Erosheva, 2018. "Disparities in ratings of internal and external applicants: A case for model-based inter-rater reliability," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    5. Richard A. Berk & Susan B. Sorenson & Geoffrey Barnes, 2016. "Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(1), pages 94-115, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Netta Barak‐Corren & Yoav Kan‐Tor & Nelson Tebbe, 2022. "Examining the effects of antidiscrimination laws on children in the foster care and adoption systems," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1003-1066, December.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    4. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    5. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    6. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    7. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    8. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    10. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    11. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    12. SeungHoon Han & Jordan M. Hyatt & Geoffrey C. Barnes & Lawrence W. Sherman, 2024. "A Bayesian Analysis of a Cognitive-Behavioral Therapy Intervention for High-Risk People on Probation," Evaluation Review, , vol. 48(6), pages 991-1023, December.
    13. Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," LSE Research Online Documents on Economics 121374, London School of Economics and Political Science, LSE Library.
    14. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    15. Siyu Han & Shixiang Yu & Mengya Shi & Makoto Harada & Jianhong Ge & Jiesheng Lin & Cornelia Prehn & Agnese Petrera & Ying Li & Flora Sam & Giuseppe Matullo & Jerzy Adamski & Karsten Suhre & Christian , 2025. "LEOPARD: missing view completion for multi-timepoint omics data via representation disentanglement and temporal knowledge transfer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    16. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    17. Andrea Lazzari & Simone Giovinazzo & Giovanni Cabassi & Massimo Brambilla & Carlo Bisaglia & Elio Romano, 2025. "Evaluating Urban Sewage Sludge Distribution on Agricultural Land Using Interpolation and Machine Learning Techniques," Agriculture, MDPI, vol. 15(2), pages 1-13, January.
    18. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    19. Sofia Amaral & Gordon B. Dahl & Victoria Endl-Geyer & Timo Hener & Helmut Rainer, 2023. "Deterrence or Backlash? Arrests and the Dynamics of Domestic Violence," NBER Working Papers 30855, National Bureau of Economic Research, Inc.
    20. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jcjust:v:96:y:2025:i:c:s0047235224001867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcrimjus .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.