IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i3p847-853.html
   My bibliography  Save this article

On the role of the estimation error in prediction of expected shortfall

Author

Listed:
  • Lönnbark, Carl

Abstract

In the estimation of risk measures such as Value at Risk and Expected shortfall relatively short estimation windows are typically used rendering the estimation error a possibly non-negligible component. In this paper we build upon previous results for the Value at Risk and discuss how the estimation error comes into play for the Expected Shortfall. We identify two important aspects where it may be of importance. On the one hand there is in the evaluation of predictors of the measure. On the other there is in the interpretation and communication of it. We illustrate magnitudes numerically and emphasize the practical importance of the latter aspect in an empirical application with stock market index data.

Suggested Citation

  • Lönnbark, Carl, 2013. "On the role of the estimation error in prediction of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 847-853.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:3:p:847-853
    DOI: 10.1016/j.jbankfin.2012.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037842661200324X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    5. Kerkhof, Jeroen & Melenberg, Bertrand, 2004. "Backtesting for risk-based regulatory capital," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1845-1865, August.
    6. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    7. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
    10. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Backtesting; Delta method; Finance; GARCH; Risk management;

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:3:p:847-853. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.