IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v35y2011i7p1777-1793.html
   My bibliography  Save this article

Nonlinearly weighted convex risk measure and its application

Author

Listed:
  • Chen, Zhiping
  • Yang, Li

Abstract

We propose a new class of risk measures which satisfy convexity and monotonicity, two well-accepted axioms a reasonable and realistic risk measure should satisfy. Through a nonlinear weight function, the new measure can flexibly reflect the investor's degree of risk aversion, and can control the fat-tail phenomenon of the loss distribution. A realistic portfolio selection model with typical market frictions taken into account is established based on the new measure. Real data from the Chinese stock markets and American stock markets are used for empirical comparison of the new risk measure with the expected shortfall risk measure. The in-sample and out-of-sample empirical results show that the new risk measure and the corresponding portfolio selection model can not only reflect the investor's risk-averse attitude and the impact of different trading constraints, but can find robust optimal portfolios, which are superior to the corresponding optimal portfolios obtained under the expected shortfall risk measure.

Suggested Citation

  • Chen, Zhiping & Yang, Li, 2011. "Nonlinearly weighted convex risk measure and its application," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1777-1793, July.
  • Handle: RePEc:eee:jbfina:v:35:y:2011:i:7:p:1777-1793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426610004516
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Hwang, Soosung & Satchell, Steve E., 2010. "How loss averse are investors in financial markets?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2425-2438, October.
    3. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    4. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    5. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    6. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    7. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    8. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    9. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    11. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    12. Pérignon, Christophe & Smith, Daniel R., 2010. "Diversification and Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 55-66, January.
    13. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    14. Silver, M S, 1985. "On the Measurement of Changes in Aggregate Concentration, Market Concentration and Diversification," Journal of Industrial Economics, Wiley Blackwell, vol. 33(3), pages 349-352, March.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Ding, Bill & Shawky, Hany A. & Tian, Jianbo, 2009. "Liquidity shocks, size and the relative performance of hedge fund strategies," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 883-891, May.
    17. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    2. repec:eee:apmaco:v:282:y:2016:i:c:p:187-203 is not listed on IDEAS
    3. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    4. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:35:y:2011:i:7:p:1777-1793. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.