IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Nonlinearly weighted convex risk measure and its application

  • Chen, Zhiping
  • Yang, Li
Registered author(s):

    We propose a new class of risk measures which satisfy convexity and monotonicity, two well-accepted axioms a reasonable and realistic risk measure should satisfy. Through a nonlinear weight function, the new measure can flexibly reflect the investor's degree of risk aversion, and can control the fat-tail phenomenon of the loss distribution. A realistic portfolio selection model with typical market frictions taken into account is established based on the new measure. Real data from the Chinese stock markets and American stock markets are used for empirical comparison of the new risk measure with the expected shortfall risk measure. The in-sample and out-of-sample empirical results show that the new risk measure and the corresponding portfolio selection model can not only reflect the investor's risk-averse attitude and the impact of different trading constraints, but can find robust optimal portfolios, which are superior to the corresponding optimal portfolios obtained under the expected shortfall risk measure.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426610004516
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Banking & Finance.

    Volume (Year): 35 (2011)
    Issue (Month): 7 (July)
    Pages: 1777-1793

    as
    in new window

    Handle: RePEc:eee:jbfina:v:35:y:2011:i:7:p:1777-1793
    Contact details of provider: Web page: http://www.elsevier.com/locate/jbf

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    2. Chung, Dennis & Hrazdil, Karel, 2010. "Liquidity and market efficiency: A large sample study," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2346-2357, October.
    3. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    4. Ding, Bill & Shawky, Hany A. & Tian, Jianbo, 2009. "Liquidity shocks, size and the relative performance of hedge fund strategies," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 883-891, May.
    5. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    6. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    7. Hwang, Soosung & Satchell, Steve E., 2010. "How loss averse are investors in financial markets?," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2425-2438, October.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, 01.
    10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    11. Pérignon, Christophe & Smith, Daniel R., 2010. "The level and quality of Value-at-Risk disclosure by commercial banks," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 362-377, February.
    12. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    13. Silver, M S, 1985. "On the Measurement of Changes in Aggregate Concentration, Market Concentration and Diversification," Journal of Industrial Economics, Wiley Blackwell, vol. 33(3), pages 349-52, March.
    14. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    15. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    16. Pérignon, Christophe & Smith, Daniel R., 2010. "Diversification and Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 55-66, January.
    17. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:35:y:2011:i:7:p:1777-1793. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.