IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v68y2018icp48-60.html
   My bibliography  Save this article

Evaluating airline service quality using a combined fuzzy decision-making approach

Author

Listed:
  • Perçin, Selçuk

Abstract

Developments in the airline industry in the last decade have been forcing airlines to evaluate the quality of their service performance with the goal of improving their competitive advantage. It has also become one of the most challenging tasks potentially influencing airlines' long-term success. This challenge calls for a systematic decision-aid tool that can not only handle the vagueness and conflicting nature of service quality evaluation criteria but also integrates the strengths of various multi-criteria decision-making (MCDM) methods in a fuzzy environment.

Suggested Citation

  • Perçin, Selçuk, 2018. "Evaluating airline service quality using a combined fuzzy decision-making approach," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 48-60.
  • Handle: RePEc:eee:jaitra:v:68:y:2018:i:c:p:48-60
    DOI: 10.1016/j.jairtraman.2017.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717300339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2017.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pakdil, Fatma & Aydın, Özlem, 2007. "Expectations and perceptions in airline services: An analysis using weighted SERVQUAL scores," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 229-237.
    2. Li, Wenhua & Yu, Suihuai & Pei, Huining & Zhao, Chuan & Tian, Baozhen, 2017. "A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 49-64.
    3. Wu, Hung-Yi & Lin, Yi-Kuei & Chang, Chi-Hsiang, 2011. "Performance evaluation of extension education centers in universities based on the balanced scorecard," Evaluation and Program Planning, Elsevier, vol. 34(1), pages 37-50, February.
    4. Pandey, Mukesh Mohan, 2016. "Evaluating the service quality of airports in Thailand using fuzzy multi-criteria decision making method," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 241-249.
    5. Liou, James J.H. & Tzeng, Gwo-Hshiung & Chang, Han-Chun, 2007. "Airline safety measurement using a hybrid model," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 243-249.
    6. Chang, Yu-Hern & Yeh, Chung-Hsing, 2002. "A survey analysis of service quality for domestic airlines," European Journal of Operational Research, Elsevier, vol. 139(1), pages 166-177, May.
    7. Zhang, Ling & Zhang, Luping & Zhou, Peng & Zhou, Dequn, 2015. "A non-additive multiple criteria analysis method for evaluation of airline service quality," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 154-161.
    8. Liou, James J.H. & Tzeng, Gwo-Hshiung, 2007. "A non-additive model for evaluating airline service quality," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 131-138.
    9. Kuo, Ming-Shin, 2011. "A novel interval-valued fuzzy MCDM method for improving airlines’ service quality in Chinese cross-strait airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1177-1193.
    10. Aksoy, Safak & Atilgan, Eda & Akinci, Serkan, 2003. "Airline services marketing by domestic and foreign firms: differences from the customers’ viewpoint," Journal of Air Transport Management, Elsevier, vol. 9(6), pages 343-351.
    11. Liou, James J.H. & Tsai, Chieh-Yuan & Lin, Rong-Ho & Tzeng, Gwo-Hshiung, 2011. "A modified VIKOR multiple-criteria decision method for improving domestic airlines service quality," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 57-61.
    12. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    13. Yeh, Tsu-Ming & Huang, Yu-Lang, 2014. "Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP," Renewable Energy, Elsevier, vol. 66(C), pages 159-169.
    14. Park, Jin-Woo, 2007. "Passenger perceptions of service quality: Korean and Australian case studies," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 238-242.
    15. Chen, I-Shuo, 2016. "A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 7-18.
    16. Liou, James J.H. & Hsu, Chao-Che & Yeh, Wen-Chien & Lin, Rong-Ho, 2011. "Using a modified grey relation method for improving airline service quality," Tourism Management, Elsevier, vol. 32(6), pages 1381-1388.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellizzi, Maria Grazia & dell’Olio, Luigi & Eboli, Laura & Mazzulla, Gabriella, 2021. "Detecting passengers' heterogeneity on airlines’ services using SP data," Journal of Air Transport Management, Elsevier, vol. 96(C).
    2. Maria Grazia Bellizzi & Luigi dell’Olio & Laura Eboli & Carmen Forciniti & Gabriella Mazzulla, 2020. "Passengers’ Expectations on Airlines’ Services: Design of a Stated Preference Survey and Preliminary Outcomes," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    3. Deveci, Muhammet & Özcan, Ender & John, Robert & Öner, Sultan Ceren, 2018. "Interval type-2 hesitant fuzzy set method for improving the service quality of domestic airlines in Turkey," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 83-98.
    4. Li, Wenhua & Yu, Suihuai & Pei, Huining & Zhao, Chuan & Tian, Baozhen, 2017. "A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 49-64.
    5. Juan de Oña & Rocio de Oña, 2015. "Quality of Service in Public Transport Based on Customer Satisfaction Surveys: A Review and Assessment of Methodological Approaches," Transportation Science, INFORMS, vol. 49(3), pages 605-622, August.
    6. Samanci, Simge & Didem Atalay, Kumru & Bahar Isin, Feride, 2021. "Focusing on the big picture while observing the concerns of both managers and passengers in the post-covid era," Journal of Air Transport Management, Elsevier, vol. 90(C).
    7. Kurtulmuşoğlu, Feride Bahar & Can, Gülin Feryal & Tolon, Metehan, 2016. "A voice in the skies: Listening to airline passenger preferences," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 130-137.
    8. Mohammed Al Awadh, 2023. "Assessing the Quality of Sustainable Airline Services Utilizing the Multicriteria Decision-Making Approach," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    9. Tahanisaz, Sahar & shokuhyar, Sajjad, 2020. "Evaluation of passenger satisfaction with service quality: A consecutive method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 83(C).
    10. Shah, Faisal Tehseen & Syed, Zaineb & Imam, Abeer & Raza, Aiman, 2020. "The impact of airline service quality on passengers’ behavioral intentions using passenger satisfaction as a mediator," Journal of Air Transport Management, Elsevier, vol. 85(C).
    11. Gupta, Himanshu, 2018. "Evaluating service quality of airline industry using hybrid best worst method and VIKOR," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 35-47.
    12. Tsafarakis, Stelios & Kokotas, Theodosios & Pantouvakis, Angelos, 2018. "A multiple criteria approach for airline passenger satisfaction measurement and service quality improvement," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 61-75.
    13. HakJun Song & Wenjia Ruan & Yunmi Park, 2019. "Effects of Service Quality, Corporate Image, and Customer Trust on the Corporate Reputation of Airlines," Sustainability, MDPI, vol. 11(12), pages 1-14, June.
    14. Chen, I-Shuo, 2016. "A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 7-18.
    15. Lu, Ming-Tsang & Hsu, Chao-Che & Liou, James J.H. & Lo, Huai-Wei, 2018. "A hybrid MCDM and sustainability-balanced scorecard model to establish sustainable performance evaluation for international airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 9-19.
    16. Zhang, Ling & Zhang, Luping & Zhou, Peng & Zhou, Dequn, 2015. "A non-additive multiple criteria analysis method for evaluation of airline service quality," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 154-161.
    17. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.
    18. Kurtulmuşoğlu, Feride Bahar & Can, Gülin Feryal & Pakdil, Fatma & Tolon, Metehan, 2018. "Does gender matter? Considering gender of service in the airline industry," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 73-82.
    19. Kazim Sari & Abdullah Alper Sener, 2022. "Service quality and intention to recommend in low-cost and full-service airlines in Turkey," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 49(3), pages 297-309, September.
    20. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:68:y:2018:i:c:p:48-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.