IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i2p452-465.html
   My bibliography  Save this article

Investigating laypeople’s short- and long-term forecasts of COVID-19 infection cycles

Author

Listed:
  • Koo, Moon Su
  • Lee, Yun Shin
  • Seifert, Matthias

Abstract

How do laypeople anticipate the severity of the COVID-19 pandemic in the short and long term? The evolution of COVID-19 infection cases is characterized by wave-shaped cycles, and we examine how individuals make forecasts for this type of time series. Over 42 weeks, we ran forecasting experiments and elicited weekly judgments from the general public to analyze their forecasting behavior (Study 1). We find that laypeople often tend to dampen trends when generating judgmental forecasts, but the degree to which this happens depends on the evolution of the cyclic time series data. The observed forecasting behavior reveals evidence of an optimism bias in that people do not expect the number of infection cases to grow at the observed rate while believing that infection rates would drop at an even faster rate than they are. Also, our results suggest that laypeople’s forecasting judgments are affected by the magnitude of the present wave relative to the previously observed ones. Further, we provide evidence that laypeople rely on a cognitive heuristic for generating long-term forecasts. People tend to rely on a linear discounting rule in that they lower their long-term forecasts proportionally to the interval of the forecast horizon, i.e., from tomorrow to 6 months and from 6 months to 1 year. We also find that this linear discounting rule can change to an exponential one in reaction to externally generated optimistic information signals such as vaccine approval. Furthermore, we replicated the major findings of Study 1 in a more controlled setting with a hypothetical pandemic scenario and artificially generated time series (Study 2). Overall, the current research contributes to the judgmental forecasting literature and provides practical implications for decision-makers in the pandemic.

Suggested Citation

  • Koo, Moon Su & Lee, Yun Shin & Seifert, Matthias, 2025. "Investigating laypeople’s short- and long-term forecasts of COVID-19 infection cycles," International Journal of Forecasting, Elsevier, vol. 41(2), pages 452-465.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:452-465
    DOI: 10.1016/j.ijforecast.2023.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goodwin, Paul & Wright, George, 1993. "Improving judgmental time series forecasting: A review of the guidance provided by research," International Journal of Forecasting, Elsevier, vol. 9(2), pages 147-161, August.
    2. Romano, Alessandro & Sotis, Chiara & Dominioni, Goran & Guidi, Sebastián, 2020. "The scale of COVID-19 graphs affects understanding, attitudes, and policy preferences," LSE Research Online Documents on Economics 106217, London School of Economics and Political Science, LSE Library.
    3. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    4. Jay J. Van Bavel & Katherine Baicker & Paulo S. Boggio & Valerio Capraro & Aleksandra Cichocka & Mina Cikara & Molly J. Crockett & Alia J. Crum & Karen M. Douglas & James N. Druckman & John Drury & Oe, 2020. "Using social and behavioural science to support COVID-19 pandemic response," Nature Human Behaviour, Nature, vol. 4(5), pages 460-471, May.
    5. Sabrina Cipolletta & Gabriela Rios Andreghetti & Giovanna Mioni, 2022. "Risk Perception towards COVID-19: A Systematic Review and Qualitative Synthesis," IJERPH, MDPI, vol. 19(8), pages 1-25, April.
    6. Banerjee, Ritwik & Bhattacharya, Joydeep & Majumdar, Priyama, 2021. "Exponential-growth prediction bias and compliance with safety measures related to COVID-19," Social Science & Medicine, Elsevier, vol. 268(C).
    7. Reimers, Stian & Harvey, Nigel, 2011. "Sensitivity to autocorrelation in judgmental time series forecasting," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1196-1214, October.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Mary Thomson & Andrew Pollock & Karen Henriksen & Alex Macaulay, 2004. "The influence of the forecast horizon on judgemental probability forecasts of exchange rate movements," The European Journal of Finance, Taylor & Francis Journals, vol. 10(4), pages 290-307.
    10. Anna Petherick & Rafael Goldszmidt & Eduardo B. Andrade & Rodrigo Furst & Thomas Hale & Annalena Pott & Andrew Wood, 2021. "A worldwide assessment of changes in adherence to COVID-19 protective behaviours and hypothesized pandemic fatigue," Nature Human Behaviour, Nature, vol. 5(9), pages 1145-1160, September.
    11. Harvey, Nigel & Bolger, Fergus, 1996. "Graphs versus tables: Effects of data presentation format on judgemental forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 119-137, March.
    12. Lunn, Peter D. & Timmons, Shane & Belton, Cameron A. & Barjaková, Martina & Julienne, Hannah & Lavin, Ciarán, 2020. "Motivating social distancing during the COVID-19 pandemic: An online experiment," Social Science & Medicine, Elsevier, vol. 265(C).
    13. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    14. Solís Arce, Julio S. & Warren, Shana S. & Meriggi, Niccolò F. & Scacco, Alexandra & McMurry, Nina & Voors, Maarten & Syunyaev, Georgiy & Malik, Amyn Abdul & Aboutajdine, Samya & Adeojo, Opeyemi & Anig, 2021. "COVID-19 vaccine acceptance and hesitancy in low- and middle-income countries," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 27, pages 1-1.
    15. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    16. Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
    17. Nikos I Bosse & Sam Abbott & Johannes Bracher & Habakuk Hain & Billy J Quilty & Mark Jit & Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group & Edwin van Leeuwen & Ann, 2022. "Comparing human and model-based forecasts of COVID-19 in Germany and Poland," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-24, September.
    18. Alessandro Romano & Chiara Sotis & Goran Dominioni & Sebastián Guidi, 2020. "The scale of COVID‐19 graphs affects understanding, attitudes, and policy preferences," Health Economics, John Wiley & Sons, Ltd., vol. 29(11), pages 1482-1494, November.
    19. Eggleton, Irc, 1982. "Intuitive Time-Series Extrapolation," Journal of Accounting Research, Wiley Blackwell, vol. 20(1), pages 68-102.
    20. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    21. Lawrence, Michael & Makridakis, Spyros, 1989. "Factors affecting judgmental forecasts and confidence intervals," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(2), pages 172-187, April.
    22. Gabriel Recchia & Alexandra L J Freeman & David Spiegelhalter, 2021. "How well did experts and laypeople forecast the size of the COVID-19 pandemic?," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    23. Katsikopoulos, Konstantinos V. & Şimşek, Özgür & Buckmann, Marcus & Gigerenzer, Gerd, 2022. "Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 613-619.
    24. Thomas McAndrew & Nicholas G Reich, 2022. "An expert judgment model to predict early stages of the COVID-19 pandemic in the United States," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-19, September.
    25. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    26. Ori Heffetz & Matthew Rabin, 2023. "Estimating perceptions of the relative COVID risk of different social-distancing behaviors from respondents’ pairwise assessments," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(7), pages 2219599120-, February.
    27. Avinash Collis & Kiran Garimella & Alex Moehring & M. Amin Rahimian & Stella Babalola & Nina H. Gobat & Dominick Shattuck & Jeni Stolow & Sinan Aral & Dean Eckles, 2022. "Global survey on COVID-19 beliefs, behaviours and norms," Nature Human Behaviour, Nature, vol. 6(9), pages 1310-1317, September.
    28. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    29. Goodwin, P & Wright, G, 1994. "Heuristics, biases and improvement strategies in judgmental time series forecasting," Omega, Elsevier, vol. 22(6), pages 553-568, November.
    30. O'Connor, Marcus & Lawrence, Michael, 1992. "Time series characteristics and the widths of judgemental confidence intervals," International Journal of Forecasting, Elsevier, vol. 7(4), pages 413-420, March.
    31. Sobolev, Daphne, 2017. "The effect of price volatility on judgmental forecasts: The correlated response model," International Journal of Forecasting, Elsevier, vol. 33(3), pages 605-617.
    32. Yun Shin Lee & Yong Won Seo & Enno Siemsen, 2018. "Running Behavioral Operations Experiments Using Amazon's Mechanical Turk," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 973-989, May.
    33. Erik Snowberg & Leeat Yariv, 2021. "Testing the Waters: Behavior across Participant Pools," American Economic Review, American Economic Association, vol. 111(2), pages 687-719, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    2. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    3. Zoe Theocharis & Leonard A. Smith & Nigel Harvey, 2019. "The influence of graphical format on judgmental forecasting accuracy: Lines versus points," Futures & Foresight Science, John Wiley & Sons, vol. 1(1), March.
    4. Thomson, Mary E. & Pollock, Andrew C. & Gönül, M. Sinan & Önkal, Dilek, 2013. "Effects of trend strength and direction on performance and consistency in judgmental exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 337-353.
    5. Thomson, Mary E. & Onkal-Atay, Dilek & Pollock, Andrew C. & Macaulay, Alex, 2003. "The influence of trend strength on directional probabilistic currency predictions," International Journal of Forecasting, Elsevier, vol. 19(2), pages 241-256.
    6. Reimers, Stian & Harvey, Nigel, 2011. "Sensitivity to autocorrelation in judgmental time series forecasting," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1196-1214, October.
    7. Harvey, Nigel & De Baets, Shari, 2025. "Factors affecting preferences between judgmental and algorithmic forecasts: Feedback, guidance and labeling effects," International Journal of Forecasting, Elsevier, vol. 41(2), pages 532-553.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Theocharis, Zoe & Harvey, Nigel, 2016. "Order effects in judgmental forecasting," International Journal of Forecasting, Elsevier, vol. 32(1), pages 44-60.
    10. Reimers, Stian & Harvey, Nigel, 2024. "Bars, lines and points: The effect of graph format on judgmental forecasting," International Journal of Forecasting, Elsevier, vol. 40(1), pages 44-61.
    11. Petropoulos, Fotios & Goodwin, Paul & Fildes, Robert, 2017. "Using a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge," International Journal of Forecasting, Elsevier, vol. 33(1), pages 314-324.
    12. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    13. Theocharis, Zoe & Harvey, Nigel, 2019. "When does more mean worse? Accuracy of judgmental forecasting is nonlinearly related to length of data series," Omega, Elsevier, vol. 87(C), pages 10-19.
    14. Harvey, Nigel & Harries, Clare, 2004. "Effects of judges' forecasting on their later combination of forecasts for the same outcomes," International Journal of Forecasting, Elsevier, vol. 20(3), pages 391-409.
    15. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    16. Han, Weiwei & Wang, Xun & Petropoulos, Fotios & Wang, Jing, 2019. "Brain imaging and forecasting: Insights from judgmental model selection," Omega, Elsevier, vol. 87(C), pages 1-9.
    17. De Baets, Shari & Harvey, Nigel, 2020. "Using judgment to select and adjust forecasts from statistical models," European Journal of Operational Research, Elsevier, vol. 284(3), pages 882-895.
    18. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    19. Harvey, Nigel & Bolger, Fergus, 1996. "Graphs versus tables: Effects of data presentation format on judgemental forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 119-137, March.
    20. Kreye, M.E. & Goh, Y.M. & Newnes, L.B. & Goodwin, P., 2012. "Approaches to displaying information to assist decisions under uncertainty," Omega, Elsevier, vol. 40(6), pages 682-692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:452-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.