IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010485.html
   My bibliography  Save this article

An expert judgment model to predict early stages of the COVID-19 pandemic in the United States

Author

Listed:
  • Thomas McAndrew
  • Nicholas G Reich

Abstract

From February to May 2020, experts in the modeling of infectious disease provided quantitative predictions and estimates of trends in the emerging COVID-19 pandemic in a series of 13 surveys. Data on existing transmission patterns were sparse when the pandemic began, but experts synthesized information available to them to provide quantitative, judgment-based assessments of the current and future state of the pandemic. We aggregated expert predictions into a single “linear pool” by taking an equally weighted average of their probabilistic statements. At a time when few computational models made public estimates or predictions about the pandemic, expert judgment provided (a) falsifiable predictions of short- and long-term pandemic outcomes related to reported COVID-19 cases, hospitalizations, and deaths, (b) estimates of latent viral transmission, and (c) counterfactual assessments of pandemic trajectories under different scenarios. The linear pool approach of aggregating expert predictions provided more consistently accurate predictions than any individual expert, although the predictive accuracy of a linear pool rarely provided the most accurate prediction. This work highlights the importance that an expert linear pool could play in flexibly assessing a wide array of risks early in future emerging outbreaks, especially in settings where available data cannot yet support data-driven computational modeling.Author summary: We asked experts in the modeling of infectious disease to submit probabilistic predictions of the spread and burden of SARS-CoV-2/COVID-19 from February to May, 2020 in an effort to support public health decision making. Expert predictions were aggregated into a linear pool. We found experts could produce short and long term predictions related to the pandemic that could be compared to ground truth such as the number of cases occurring by the end of the week and predictions of unmeasurable outcomes such as latent viral transmission. Experts were also able to make counter factual predictions—predictions of an outcome assuming an action will continue or not continue. In addition, predictions built by aggregating individual expert predictions were less variable when compared to predictions made by individuals. Our work highlights that an expert linear pool is a fast, flexible tool that can support situational awareness for public health officials during an emerging outbreak.

Suggested Citation

  • Thomas McAndrew & Nicholas G Reich, 2022. "An expert judgment model to predict early stages of the COVID-19 pandemic in the United States," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-19, September.
  • Handle: RePEc:plo:pcbi00:1010485
    DOI: 10.1371/journal.pcbi.1010485
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010485
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010485&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bouwman, Marinus J., 1984. "Expert vs novice decision making in accounting: A summary," Accounting, Organizations and Society, Elsevier, vol. 9(3-4), pages 325-327, October.
    2. Gabriel Recchia & Alexandra L J Freeman & David Spiegelhalter, 2021. "How well did experts and laypeople forecast the size of the COVID-19 pandemic?," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    3. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    4. Allan H. Murphy & Robert L. Winkler, 1977. "Reliability of Subjective Probability Forecasts of Precipitation and Temperature," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 41-47, March.
    5. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    2. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Ville A. Satopää & Marat Salikhov & Philip E. Tetlock & Barbara Mellers, 2021. "Bias, Information, Noise: The BIN Model of Forecasting," Management Science, INFORMS, vol. 67(12), pages 7599-7618, December.
    5. Dimitriadis, Timo & Gneiting, Tilmann & Jordan, Alexander I. & Vogel, Peter, 2024. "Evaluating probabilistic classifiers: The triptych," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1101-1122.
    6. Nicholas G Reich & Craig J McGowan & Teresa K Yamana & Abhinav Tushar & Evan L Ray & Dave Osthus & Sasikiran Kandula & Logan C Brooks & Willow Crawford-Crudell & Graham Casey Gibson & Evan Moore & Reb, 2019. "Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the U.S," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-19, November.
    7. Christopher W. Karvetski & David R. Mandel & Daniel Irwin, 2020. "Improving Probability Judgment in Intelligence Analysis: From Structured Analysis to Statistical Aggregation," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1040-1057, May.
    8. Abel Sancarlos & Edgar Bahilo & Pablo Mozo & Lukas Norman & Obaid Ur Rehma & Mihails Anufrijevs, 2023. "Towards a data-driven debt collection strategy based on an advanced machine learning framework," Papers 2311.06292, arXiv.org.
    9. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    10. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    11. Fergus Bolger & Gene Rowe, 2015. "The Aggregation of Expert Judgment: Do Good Things Come to Those Who Weight?," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 5-11, January.
    12. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    13. Victor Richmond R. Jose & Robert L. Winkler, 2009. "Evaluating Quantile Assessments," Operations Research, INFORMS, vol. 57(5), pages 1287-1297, October.
    14. Lambert, Nicolas S. & Langford, John & Wortman Vaughan, Jennifer & Chen, Yiling & Reeves, Daniel M. & Shoham, Yoav & Pennock, David M., 2015. "An axiomatic characterization of wagering mechanisms," Journal of Economic Theory, Elsevier, vol. 156(C), pages 389-416.
    15. Saeed Hayati & Kenji Fukumizu & Afshin Parvardeh, 2024. "Kernel mean embedding of probability measures and its applications to functional data analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 447-484, June.
    16. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    17. Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
    18. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    19. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    20. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.