IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p290-306.html
   My bibliography  Save this article

Multi-view locally weighted regression for loss given default forecasting

Author

Listed:
  • Cheng, Hui
  • Jiang, Cuiqing
  • Wang, Zhao
  • Ni, Xiaoya

Abstract

Accurately forecasting loss given default (LGD) poses challenges, due to its highly skewed distributions and complex nonlinear dependencies with predictors. To this end, we propose a multi-view locally weighted regression (MVLWR) method for LGD forecasting. To address the complexity of LGD distributions, we build a specific ensemble LGD forecasting model tailored for each new sample, providing flexibility and relaxing reliance on distribution assumptions. To address complex relationships, we combine multi-view learning and ensemble learning for LGD modeling. Specifically, we divide original features into multiple complementary groups, build a view-specific locally weighted model for each group, and aggregate the outputs from all view-specific models. An empirical evaluation using a real-world dataset shows that the proposed method outperforms all the benchmarked methods in terms of both out-of-sample and out-of-time performance in LGD forecasting. We also provide valuable insights and practical implications for stakeholders, particularly financial institutions, to enhance their LGD forecasting capabilities.

Suggested Citation

  • Cheng, Hui & Jiang, Cuiqing & Wang, Zhao & Ni, Xiaoya, 2025. "Multi-view locally weighted regression for loss given default forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 290-306.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:290-306
    DOI: 10.1016/j.ijforecast.2024.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    4. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
    5. Bastos, João A., 2010. "Forecasting bank loans loss-given-default," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2510-2517, October.
    6. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    7. Qi, Min & Yang, Xiaolong, 2009. "Loss given default of high loan-to-value residential mortgages," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 788-799, May.
    8. João Bastos, 2014. "Ensemble Predictions of Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
    9. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    10. Jiří Witzany & Michal Rychnovský & Pavel Charamza, 2012. "Survival Analysis in LGD Modeling," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2012(1), pages 6-27.
    11. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    12. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    13. Jankowitsch, Rainer & Nagler, Florian & Subrahmanyam, Marti G., 2014. "The determinants of recovery rates in the US corporate bond market," Journal of Financial Economics, Elsevier, vol. 114(1), pages 155-177.
    14. Ellen Tobback & David Martens & Tony Van Gestel & Bart Baesens, 2014. "Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 376-392, March.
    15. Khieu, Hinh D. & Mullineaux, Donald J. & Yi, Ha-Chin, 2012. "The determinants of bank loan recovery rates," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 923-933.
    16. Luong, Thi Mai & Scheule, Harald, 2022. "Benchmarking forecast approaches for mortgage credit risk for forward periods," European Journal of Operational Research, Elsevier, vol. 299(2), pages 750-767.
    17. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    18. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    19. Mindy Leow & Christophe Mues & Lyn Thomas, 2014. "The economy and loss given default: evidence from two UK retail lending data sets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 363-375, March.
    20. Bellotti, Tony & Crook, Jonathan, 2012. "Loss given default models incorporating macroeconomic variables for credit cards," International Journal of Forecasting, Elsevier, vol. 28(1), pages 171-182.
    21. Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
    22. A Matuszyk & C Mues & L C Thomas, 2010. "Modelling LGD for unsecured personal loans: decision tree approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 393-398, March.
    23. Guangyou Zhou & Yijia Zhang & Sumei Luo, 2018. "P2P Network Lending, Loss Given Default and Credit Risks," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    24. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    25. Raffaella Calabrese, 2014. "Predicting bank loan recovery rates with a mixed continuous‐discrete model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(2), pages 99-114, March.
    26. Thomas, L.C. & Matuszyk, A. & Moore, A., 2012. "Comparing debt characteristics and LGD models for different collections policies," International Journal of Forecasting, Elsevier, vol. 28(1), pages 196-203.
    27. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    28. Huang, Yating & Wang, Zhao & Jiang, Cuiqing, 2024. "Diagnosis with incomplete multi-view data: A variational deep financial distress prediction method," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
    29. Katarzyna Bijak & Lyn C Thomas, 2015. "Modelling LGD for unsecured retail loans using Bayesian methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(2), pages 342-352, February.
    30. Wojciech Starosta, 2021. "Forecast combination approach in the loss given default estimation," Applied Economics Letters, Taylor & Francis Journals, vol. 28(21), pages 1813-1817, December.
    31. Tanoue, Yuta & Kawada, Akihiro & Yamashita, Satoshi, 2017. "Forecasting loss given default of bank loans with multi-stage model," International Journal of Forecasting, Elsevier, vol. 33(2), pages 513-522.
    32. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    33. Jhao-Siang Siao & Ruey-Ching Hwang & Chih-Kang Chu, 2016. "Predicting recovery rates using logistic quantile regression with bounded outcomes," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 777-792, May.
    34. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn, 2013. "A zero-adjusted gamma model for mortgage loan loss given default," International Journal of Forecasting, Elsevier, vol. 29(4), pages 548-562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    2. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    3. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    4. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    5. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    6. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    7. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    8. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    9. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2017. "Enhancing two-stage modelling methodology for loss given default with support vector machines," European Journal of Operational Research, Elsevier, vol. 263(2), pages 679-689.
    10. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    11. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
    12. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    13. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    14. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
    15. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    16. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    17. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    18. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    19. Bastos, João A. & Matos, Sara M., 2022. "Explainable models of credit losses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
    20. Jérémy Leymarie & Christophe Hurlin & Antoine Patin, 2018. "Loss Functions for LGD Models Comparison," Post-Print hal-01923050, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:290-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.