IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i3d10.1057_jors.2009.67.html
   My bibliography  Save this article

Modelling LGD for unsecured personal loans: decision tree approach

Author

Listed:
  • A Matuszyk

    (University of Southampton)

  • C Mues

    (University of Southampton)

  • L C Thomas

    (University of Southampton)

Abstract

The New Basel Accord, which was implemented in 2007, has made a significant difference to the use of modelling within financial organisations. In particular it has highlighted the importance of Loss Given Default (LGD) modelling. We propose a decision tree approach to modelling LGD for unsecured consumer loans where the uncertainty in some of the nodes is modelled using a mixture model, where the parameters are obtained using regression. A case study based on default data from the in-house collections department of a UK financial organisation is used to show how such regression can be undertaken.

Suggested Citation

  • A Matuszyk & C Mues & L C Thomas, 2010. "Modelling LGD for unsecured personal loans: decision tree approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 393-398, March.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.67
    DOI: 10.1057/jors.2009.67
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.67
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.67?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stijn Claessens & Jan Krahnen & William Lang, 2005. "The Basel II Reform and Retail Credit Markets," Journal of Financial Services Research, Springer;Western Finance Association, vol. 28(1), pages 5-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    2. Matuszyk, Anna & So, Mee Chi & Mues, Christophe & Moore, Angela, 2016. "Modelling repayment patterns in the collections process for unsecured consumer debt: A case studyAuthor-Name: Thomas, Lyn C," European Journal of Operational Research, Elsevier, vol. 249(2), pages 476-486.
    3. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    4. Aneta Ptak-Chmielewska & Paweł Kopciuszewski, 2024. "Credit loss modelling using beta distribution in a Bayesian approach," Bank i Kredyt, Narodowy Bank Polski, vol. 55(3), pages 313-332.
    5. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    6. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    7. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    8. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    9. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    10. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "The loss optimisation of loan recovery decision times using forecast cash flows," Papers 2010.05601, arXiv.org.
    11. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    12. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2021. "Determinants of corporate exposure at default under distressed economic and financial conditions in a developing economy: the case of Zimbabwe," Risk Management, Palgrave Macmillan, vol. 23(1), pages 123-149, June.
    13. Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
    14. Rumyantseva, Ekaterina & Furmanov, Kirill, 2017. "Realisation of mortgage property: Survival analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 22-43.
    15. So, Meko M.C. & Thomas, Lyn C., 2011. "Modelling the profitability of credit cards by Markov decision processes," European Journal of Operational Research, Elsevier, vol. 212(1), pages 123-130, July.
    16. Thomas, L.C. & Matuszyk, A. & Moore, A., 2012. "Comparing debt characteristics and LGD models for different collections policies," International Journal of Forecasting, Elsevier, vol. 28(1), pages 196-203.
    17. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    18. Emily Johnston Ross & Lynn Shibut, 2021. "Loss Given Default, Loan Seasoning and Financial Fragility: Evidence from Commercial Real Estate Loans at Failed Banks," The Journal of Real Estate Finance and Economics, Springer, vol. 63(4), pages 630-661, November.
    19. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
    20. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doris Neuberger & Solvig Räthke, 2009. "Microenterprises and multiple bank relationships: The case of professionals," Small Business Economics, Springer, vol. 32(2), pages 207-229, February.
    2. Ellis Kofi, Akwaa-Sekyi & Portia, Bosompra, 2015. "Determinants of business loan default in Ghana," MPRA Paper 71961, University Library of Munich, Germany.
    3. Ju, Yonghan & Jeon, Song Yi & Sohn, So Young, 2015. "Behavioral technology credit scoring model with time-dependent covariates for stress test," European Journal of Operational Research, Elsevier, vol. 242(3), pages 910-919.
    4. Catarina Figueira & Joseph Nellis, 2009. "Bank merger and acquisitions activity in the EU: much ado about nothing?," The Service Industries Journal, Taylor & Francis Journals, vol. 29(7), pages 875-886, July.
    5. Alessandro Bitetto & Paola Cerchiello & Stefano Filomeni & Alessandra Tanda & Barbara Tarantino, 2021. "Machine Learning and Credit Risk: Empirical Evidence from SMEs," DEM Working Papers Series 201, University of Pavia, Department of Economics and Management.
    6. Francesco Dainelli & Francesco Giunta & Fabrizio Cipollini, 2013. "Determinants of SME credit worthiness under Basel rules: the value of credit history information," PSL Quarterly Review, Economia civile, vol. 66(264), pages 21-47.
    7. Dinc, Yusuf, 2017. "Comparative empirical analysis on the effect of mortgage loan on capital adequacy ratio," MPRA Paper 86451, University Library of Munich, Germany, revised 25 May 2017.
    8. Bitetto, Alessandro & Cerchiello, Paola & Filomeni, Stefano & Tanda, Alessandra & Tarantino, Barbara, 2023. "Machine learning and credit risk: Empirical evidence from small- and mid-sized businesses," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    9. Alessandro Bitetto & Paola Cerchiello & Stefano Filomeni & Alessandra Tanda & Barbara Tarantino, 2024. "Can we trust machine learning to predict the credit risk of small businesses?," Review of Quantitative Finance and Accounting, Springer, vol. 63(3), pages 925-954, October.
    10. Doris Neuberger & Solvig Räthke & Christoph Schacht, 2006. "The Number of Bank Relationships of SMEs: A Disaggregated Analysis of Changes in the Swiss Loan Market," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 35(3), pages 319-353, November.

    More about this item

    Keywords

    Basel II; consumer credit; LGD;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.