IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i2p476-486.html
   My bibliography  Save this article

Modelling repayment patterns in the collections process for unsecured consumer debt: A case studyAuthor-Name: Thomas, Lyn C

Author

Listed:
  • Matuszyk, Anna
  • So, Mee Chi
  • Mues, Christophe
  • Moore, Angela

Abstract

One approach to modelling Loss Given Default (LGD), the percentage of the defaulted amount of a loan that a lender will eventually lose is to model the collections process. This is particularly relevant for unsecured consumer loans where LGD depends both on a defaulter's ability and willingness to repay and the lender's collection strategy. When repaying such defaulted loans, defaulters tend to oscillate between repayment sequences where the borrower is repaying every period and non-repayment sequences where the borrower is not repaying in any period. This paper develops two models – one a Markov chain approach and the other a hazard rate approach to model such payment patterns of debtors. It also looks at simplifications of the models where one assumes that after a few repayment and non-repayment sequences the parameters of the model are fixed for the remaining payment and non-payment sequences. One advantage of these approaches is that they show the impact of different write-off strategies. The models are applied to a real case study and the LGD for that portfolio is calculated under different write-off strategies and compared with the actual LGD results.

Suggested Citation

  • Matuszyk, Anna & So, Mee Chi & Mues, Christophe & Moore, Angela, 2016. "Modelling repayment patterns in the collections process for unsecured consumer debt: A case studyAuthor-Name: Thomas, Lyn C," European Journal of Operational Research, Elsevier, vol. 249(2), pages 476-486.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:476-486
    DOI: 10.1016/j.ejor.2015.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Raymond, 2007. "The Credit Scoring Toolkit: Theory and Practice for Retail Credit Risk Management and Decision Automation," OUP Catalogue, Oxford University Press, number 9780199226405.
    2. George Curnow & Gary Kochman & Steven Meester & Debashish Sarkar & Keith Wilton, 1997. "Automating Credit and Collections Decisions at AT&T Capital Corporation," Interfaces, INFORMS, vol. 27(1), pages 29-52, February.
    3. Breeden, Joseph L., 2007. "Modeling data with multiple time dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4761-4785, May.
    4. A Matuszyk & C Mues & L C Thomas, 2010. "Modelling LGD for unsecured personal loans: decision tree approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 393-398, March.
    5. Jiří Witzany & Michal Rychnovský & Pavel Charamza, 2012. "Survival Analysis in LGD Modeling," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2012(1), pages 6-27.
    6. Alexandra Schwarz, 2011. "Measurement, Monitoring, and Forecasting of Consumer Credit Default Risk - An Indicator Approach Based on Individual Payment Histories," Schumpeter Discussion Papers sdp11004, Universitätsbibliothek Wuppertal, University Library.
    7. R. M. Cyert & H. J. Davidson & G. L. Thompson, 1962. "Estimation of the Allowance for Doubtful Accounts by Markov Chains," Management Science, INFORMS, vol. 8(3), pages 287-303, April.
    8. Thomas, Lyn C., 2009. "Consumer Credit Models: Pricing, Profit and Portfolios," OUP Catalogue, Oxford University Press, number 9780199232130.
    9. Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.
    10. Bellotti, Tony & Crook, Jonathan, 2012. "Loss given default models incorporating macroeconomic variables for credit cards," International Journal of Forecasting, Elsevier, vol. 28(1), pages 171-182.
    11. Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
    12. Dermine, J. & de Carvalho, C. Neto, 2006. "Bank loan losses-given-default: A case study," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1219-1243, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    2. Jiří Witzany & Anastasiia Kozina, 2022. "Recovery process optimization using survival regression," Operational Research, Springer, vol. 22(5), pages 5269-5296, November.
    3. Zanin, Luca, 2018. "Private monetary transfers between households: Who is helped and by whom?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 17(C), pages 76-82.
    4. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "The loss optimisation of loan recovery decision times using forecast cash flows," Papers 2010.05601, arXiv.org.
    5. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "Simulation-based optimisation of the timing of loan recovery across different portfolios," Papers 2009.11064, arXiv.org, revised Apr 2021.
    6. Chen, Shou & Jiang, Xiangqian & He, Hongbo & Zhou, Xi, 2020. "A pricing model with dynamic repayment flows for guaranteed consumer loans," Economic Modelling, Elsevier, vol. 91(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    2. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    3. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    4. Peter-Hendrik Ingermann & Frederik Hesse & Christian Bélorgey & Andreas Pfingsten, 2016. "The recovery rate for retail and commercial customers in Germany: a look at collateral and its adjusted market values," Business Research, Springer;German Academic Association for Business Research, vol. 9(2), pages 179-228, August.
    5. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    6. Arno Botha & Conrad Beyers & Pieter de Villiers, 2020. "The loss optimisation of loan recovery decision times using forecast cash flows," Papers 2010.05601, arXiv.org.
    7. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    8. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    9. Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
    10. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    11. Cheng, Dan & Cirillo, Pasquale, 2018. "A reinforced urn process modeling of recovery rates and recovery times," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 1-17.
    12. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    13. Jérémy Leymarie & Christophe Hurlin & Antoine Patin, 2018. "Loss Functions for LGD Models Comparison," Post-Print hal-01923050, HAL.
    14. Emily Johnston Ross & Lynn Shibut, 2021. "Loss Given Default, Loan Seasoning and Financial Fragility: Evidence from Commercial Real Estate Loans at Failed Banks," The Journal of Real Estate Finance and Economics, Springer, vol. 63(4), pages 630-661, November.
    15. Li, Zhiyong & Li, Aimin & Bellotti, Anthony & Yao, Xiao, 2023. "The profitability of online loans: A competing risks analysis on default and prepayment," European Journal of Operational Research, Elsevier, vol. 306(2), pages 968-985.
    16. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    17. Zhixin Liu & Ping He & Bo Chen, 2019. "A Markov decision model for consumer term-loan collections," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 1043-1064, May.
    18. Malik, Madhur & Thomas, Lyn C., 2012. "Transition matrix models of consumer credit ratings," International Journal of Forecasting, Elsevier, vol. 28(1), pages 261-272.
    19. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    20. Rumyantseva, Ekaterina & Furmanov, Kirill, 2017. "Realisation of mortgage property: Survival analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 22-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:2:p:476-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.