IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i1p324-347.html
   My bibliography  Save this article

2T-POT Hawkes model for left- and right-tail conditional quantile forecasts of financial log returns: Out-of-sample comparison of conditional EVT models

Author

Listed:
  • Tomlinson, Matthew F.
  • Greenwood, David
  • Mucha-Kruczyński, Marcin

Abstract

Conditional extreme value theory (EVT) methods promise enhanced forecasting of the extreme tail events that often dominate systemic risk. We present an improved two-tailed peaks-over-threshold (2T-POT) Hawkes model that is adapted for conditional quantile forecasting in both the left and right tails of a univariate time series. This is applied to the daily log returns of six large-cap indices. We also take the unique step of fitting the model at multiple exceedance thresholds (from the 1.25% to 25.00% mirrored quantiles). Quantitatively similar asymmetries in Hawkes parameters are found across all six indices, adding further empirical support to a temporal leverage effect in financial price time series in which the impact of losses is not only larger but also more immediate. Out-of-sample backtests find that our 2T-POT Hawkes model is more reliably accurate than the GARCH-EVT model when forecasting (mirrored) value at risk and expected shortfall at the 5% coverage level and below. This suggests that asymmetric Hawkes-type arrival dynamics are a better approximation of the true generating process for extreme daily log returns than GARCH-type conditional volatility. Our 2T-POT Hawkes model therefore presents a better-performing alternative for financial risk modelling.

Suggested Citation

  • Tomlinson, Matthew F. & Greenwood, David & Mucha-Kruczyński, Marcin, 2024. "2T-POT Hawkes model for left- and right-tail conditional quantile forecasts of financial log returns: Out-of-sample comparison of conditional EVT models," International Journal of Forecasting, Elsevier, vol. 40(1), pages 324-347.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:1:p:324-347
    DOI: 10.1016/j.ijforecast.2023.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023000341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen J. Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," Papers 1302.1405, arXiv.org, revised Jun 2013.
    2. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
    5. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying reflexivity in financial markets: towards a prediction of flash crashes," Papers 1201.3572, arXiv.org, revised Apr 2012.
    6. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    7. Robert Shcherbakov & Jiancang Zhuang & Gert Zöller & Yosihiko Ogata, 2019. "Forecasting the magnitude of the largest expected earthquake," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    8. V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
    9. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    10. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    11. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    12. Vladimir Filimonov & Didier Sornette, 2012. "Quantifying Reflexivity in Financial Markets: Towards a Prediction of Flash Crashes," Swiss Finance Institute Research Paper Series 12-02, Swiss Finance Institute.
    13. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    14. Matthew F. Tomlinson & David Greenwood & Marcin Mucha-Kruczynski, 2020. "Asymmetric excitation of left- and right-tail extreme events probed using a Hawkes model: application to financial returns," Papers 2011.12291, arXiv.org, revised Aug 2021.
    15. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    16. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    17. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    18. Laurie Davies & Walter Kraemer, 2016. "Stylized Facts and Simulating Long Range Financial Data," CESifo Working Paper Series 5796, CESifo.
    19. Rémy Chicheportiche & Anirban Chakraborti, 2014. "Copulas and time series with long-ranged dependencies," Post-Print hal-00977135, HAL.
    20. Stephen Hardiman & Nicolas Bercot & Jean-Philippe Bouchaud, 2013. "Critical reflexivity in financial markets: a Hawkes process analysis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(10), pages 1-9, October.
    21. Stephen J. Hardiman & Jean-Philippe Bouchaud, 2014. "Branching ratio approximation for the self-exciting Hawkes process," Papers 1403.5227, arXiv.org, revised Oct 2014.
    22. Grothe, Oliver & Korniichuk, Volodymyr & Manner, Hans, 2014. "Modeling multivariate extreme events using self-exciting point processes," Journal of Econometrics, Elsevier, vol. 182(2), pages 269-289.
    23. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    24. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    25. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    26. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    27. Chiang, Wen-Hao & Liu, Xueying & Mohler, George, 2022. "Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates," International Journal of Forecasting, Elsevier, vol. 38(2), pages 505-520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    2. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    3. Schatz, Michael & Wheatley, Spencer & Sornette, Didier, 2022. "The ARMA Point Process and its Estimation," Econometrics and Statistics, Elsevier, vol. 24(C), pages 164-182.
    4. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    5. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    6. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    7. Hyun Jin Jang & Kiseop Lee & Kyungsub Lee, 2020. "Systemic risk in market microstructure of crude oil and gasoline futures prices: A Hawkes flocking model approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 247-275, February.
    8. Francesco Serafini & Finn Lindgren & Mark Naylor, 2023. "Approximation of Bayesian Hawkes process with inlabru," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Roger Martins & Dieter Hendricks, 2016. "The statistical significance of multivariate Hawkes processes fitted to limit order book data," Papers 1604.01824, arXiv.org, revised Apr 2016.
    11. Jean-Philippe Bouchaud, 2021. "The Inelastic Market Hypothesis: A Microstructural Interpretation," Papers 2108.00242, arXiv.org, revised Jan 2022.
    12. Kyungsub Lee, 2023. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Papers 2302.11822, arXiv.org.
    13. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
    14. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    15. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Working Papers hal-02998555, HAL.
    16. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2021. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Post-Print hal-02998555, HAL.
    17. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    18. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    19. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    20. Lucio Maria Calcagnile & Giacomo Bormetti & Michele Treccani & Stefano Marmi & Fabrizio Lillo, 2015. "Collective synchronization and high frequency systemic instabilities in financial markets," Papers 1505.00704, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:1:p:324-347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.