IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i3p511-530.html
   My bibliography  Save this article

An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts

Author

Listed:
  • Gao, Jianwei

Abstract

This paper develops an extended constant elasticity of variance (E-CEV) model to overcome the shortcomings of the general CEV model. Under the E-CEV model, we study the optimal investment strategy before and after retirement in a defined contribution pension plan where benefits are paid by annuity. By applying the Legendre transform, dual theory and an asymptotic expansion approach, we respectively derive two asymptotic strategies for a CRRA and CARA utility functions in two different periods. Furthermore, we find that each asymptotic strategy can be decomposed into an optimal zero-order strategy and a perturbation strategy. The optimal zero-order strategy denotes an investment strategy where the current volatility is just equal to the mean level of the volatility, whereas the perturbation strategy provides an approximation solution to hedge the slow varying nature of the current volatility deviating from mean level. Finally, we find that the optimal zero-order strategy under given conditions will reduce to the results of Devolder et al. (2003), Xiao et al. (2007) and Gao (2009), respectively.

Suggested Citation

  • Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:511-530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00011-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.
    2. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    3. Branger, Nicole & Schlag, Christian & Schneider, Eva, 2008. "Optimal portfolios when volatility can jump," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1087-1097, June.
    4. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    7. Beckers, Stan, 1980. " The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    8. Xiao, Jianwu & Hong, Zhai & Qin, Chenglin, 2007. "The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 302-310, March.
    9. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    10. Emms, P. & Haberman, S. & Savoulli, I., 2007. "Optimal strategies for pricing general insurance," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 15-34, January.
    11. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    12. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2004. "Optimal design of the guarantee for defined contribution funds," ULB Institutional Repository 2013/7602, ULB -- Universite Libre de Bruxelles.
    13. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    14. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    15. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    16. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    17. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    18. Gao, Jianwei, 2009. "Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 9-18, August.
    19. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    20. Yuen, K.C. & Yang, H. & Chu, K.L., 2001. "Estimation in the Constant Elasticity of Variance Model," British Actuarial Journal, Cambridge University Press, vol. 7(02), pages 275-292, June.
    21. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    22. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    23. Munk, Claus & Sorensen, Carsten & Nygaard Vinther, Tina, 2004. "Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?," International Review of Economics & Finance, Elsevier, vol. 13(2), pages 141-166.
    24. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    2. repec:arp:ajoams:2017:p:52-61 is not listed on IDEAS
    3. Chang, Hao & Chang, Kai, 2017. "Optimal consumption–investment strategy under the Vasicek model: HARA utility and Legendre transform," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 215-227.
    4. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:511-530. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.