IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Optimal portfolios when volatility can jump

  • Branger, Nicole
  • Schlag, Christian
  • Schneider, Eva
Registered author(s):

    We consider an asset allocation problem in a continuous-time model with stochastic volatility and jumps in both the asset price and its volatility. First, we derive the optimal portfolio for an investor with constant relative risk aversion. The demand for jump risk includes a hedging component, which is not present in models without volatility jumps. We further show that the introduction of derivative contracts can have substantial economic value. We also analyze the distribution of terminal wealth for an investor who uses the wrong model, either by ignoring volatility jumps or by falsely including such jumps, or who is subject to estimation risk. Whenever a model different from the true one is used, the terminal wealth distribution exhibits fatter tails and (in some cases) significant default risk.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Banking & Finance.

    Volume (Year): 32 (2008)
    Issue (Month): 6 (June)
    Pages: 1087-1097

    in new window

    Handle: RePEc:eee:jbfina:v:32:y:2008:i:6:p:1087-1097
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
    2. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    3. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
    4. Bhamra, Harjoat S. & Uppal, Raman, 2005. "The Role of Risk Aversion and Intertemporal Substitution in Dynamic Consumption-Portfolio Choicewith Recursive Utility," CEPR Discussion Papers 5020, C.E.P.R. Discussion Papers.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Liu, Jun & Pan, Jun, 2003. "Dynamic Derivative Strategies," Working papers 4334-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, 06.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Liu, Jun & Longstaff, Francis & Pan, Jun, 2001. "Dynamic Asset Allocation with Event Risk," University of California at Los Angeles, Anderson Graduate School of Management qt9fm6t5nb, Anderson Graduate School of Management, UCLA.
    10. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    11. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-61.
    12. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    13. Dieckmann, Stephan & Gallmeyer, Michael, 2005. "The equilibrium allocation of diffusive and jump risks with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 29(9), pages 1547-1576, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:6:p:1087-1097. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.