IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i7p949-965.html
   My bibliography  Save this article

Pricing and Hedging Path-Dependent Options Under the CEV Process

Author

Listed:
  • Dmitry Davydov

    () (Equities Quantitative Strategies, UBS Warburg, 677 Washington Boulevard, Stamford, Connecticut 06901)

  • Vadim Linetsky

    () (Department of Industrial Engineering and Management Sciences, McCormick School of Engineering and Applied Sciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208)

Abstract

Much of the work on path-dependent options assumes that the underlying asset price follows geometric Brownian motion with constant volatility. This paper uses a more general assumption for the asset price process that provides a better fit to the empirical observations. We use the so-called constant elasticity of variance (CEV) diffusion model where the volatility is a function of the underlying asset price. We derive analytical formulae for the prices of important types of path-dependent options under this assumption. We demonstrate that the prices of options, which depend on extrema, such as barrier and lookback options, can be much more sensitive to the specification of the underlying price process than standard call and put options and show that a financial institution that uses the standard geometric Brownian motion assumption is exposed to significant pricing and hedging errors when dealing in path-dependent options.

Suggested Citation

  • Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:7:p:949-965
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.7.949.9804
    Download Restriction: no

    References listed on IDEAS

    as
    1. Antoon Pelsser, "undated". "Pricing Double Barrier Options: An Analytical Approach," Computing in Economics and Finance 1997 130, Society for Computational Economics.
    2. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(04), pages 533-554, November.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    4. Conze, Antoine & Viswanathan, 1991. " Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    5. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    6. Goldman, M Barry & Sosin, Howard B & Shepp, Lawrence A, 1979. "On Contingent Claims That Insure Ex-post Optimal Stock Market Timing," Journal of Finance, American Finance Association, vol. 34(2), pages 401-413, May.
    7. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298.
    8. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    9. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375.
    10. Goldenberg, David H., 1991. "A unified method for pricing options on diffusion processes," Journal of Financial Economics, Elsevier, vol. 29(1), pages 3-34, March.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 241-264, June.
    13. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:7:p:949-965. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.