IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i2p180-187.html
   My bibliography  Save this article

Incomplete financial markets and contingent claim pricing in a dual expected utility theory framework

Author

Listed:
  • Corradini, M.
  • Gheno, A.

Abstract

This paper investigates the price for contingent claims in a dual expected utility theory framework, the dual price, considering arbitrage-free financial markets. A pricing formula is obtained for contingent claims written on n underlying assets following a general diffusion process. The formula holds in both complete and incomplete markets as well as in constrained markets. An application is also considered assuming a geometric Brownian motion for the underlying assets and the Wang transform as the distortion function.

Suggested Citation

  • Corradini, M. & Gheno, A., 2009. "Incomplete financial markets and contingent claim pricing in a dual expected utility theory framework," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 180-187, October.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:180-187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00060-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Shaun S., 2002. "A Universal Framework for Pricing Financial and Insurance Risks," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 32(02), pages 213-234, November.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    5. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    8. Marisa Cenci & Massimiliano Corradini & Andrea Gheno, 2005. "Dynamic portfolio selection in a dual expected utility theory framework," Departmental Working Papers of Economics - University 'Roma Tre' 0056, Department of Economics - University Roma Tre.
    9. Cenci, Marisa & Corradini, Massimiliano & Gheno, Andrea, 2006. "Dynamic Portfolio Selection in a Dual Expected Utility Theory Framework," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(02), pages 505-520, November.
    10. Mahmoud Hamada & Michael Sherris, 2003. "Contingent claim pricing using probability distortion operators: methods from insurance risk pricing and their relationship to financial theory," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 19-47.
    11. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Contingent claim pricing Dual expected utility theory Incomplete markets Wang transform;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:2:p:180-187. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.