IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

On option pricing under a completely random measure via a generalized Esscher transform

  • Lau, John W.
  • Siu, Tak Kuen

In this paper, we develop an option valuation model when the price dynamics of the underlying risky asset is governed by the exponential of a pure jump process specified by a shifted kernel-biased completely random measure. The class of kernel-biased completely random measures is a rich class of jump-type processes introduced in [James, L.F., 2005. Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33, 1771-1799; James, L.F., 2006. Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34, 416-440] and it provides a great deal of flexibility to incorporate both finite and infinite jump activities. It includes a general class of processes, namely, the generalized Gamma process, which in its turn includes the stable process, the Gamma process and the inverse Gaussian process as particular cases. The kernel-biased representation is a nice representation form and can describe different types of finite and infinite jump activities by choosing different mixing kernel functions. We employ a dynamic version of the Esscher transform, which resembles an exponential change of measures or a disintegration formula based on the Laplace functional used by James, to determine an equivalent martingale measure in the incomplete market. Closed-form option pricing formulae are obtained in some parametric cases, which provide practitioners with a convenient way to evaluate option prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V8N-4S50K29-1/2/e64e4577bdeec2c9c2520efde1322d6c
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

Volume (Year): 43 (2008)
Issue (Month): 1 (August)
Pages: 99-107

as
in new window

Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:99-107
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Albert Lo & Chung-Sing Weng, 1989. "On a class of Bayesian nonparametric estimates: II. Hazard rate estimates," Annals of the Institute of Statistical Mathematics, Springer, vol. 41(2), pages 227-245, June.
  2. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  3. Harrison, J. Michael & Pliska, Stanley R., 1983. "A stochastic calculus model of continuous trading: Complete markets," Stochastic Processes and their Applications, Elsevier, vol. 15(3), pages 313-316, August.
  4. Robert J. Elliott & Tak Kuen Siu & Leunglung Chan, 2006. "Option Pricing For Garch Models With Markov Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 825-841.
  5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  6. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  7. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
  8. Schachermayer, W., 1992. "A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 11(4), pages 249-257, December.
  9. Robert Elliott & Carlton-James Osakwe, 2006. "Option Pricing for Pure Jump Processes with Markov Switching Compensators," Finance and Stochastics, Springer, vol. 10(2), pages 250-275, April.
  10. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  11. Back, Kerry & Pliska, Stanley R., 1991. "On the fundamental theorem of asset pricing with an infinite state space," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 1-18.
  12. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  14. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:99-107. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.