IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p281-294.html
   My bibliography  Save this article

Dynamic asset liability management with tolerance for limited shortfalls

Author

Listed:
  • Detemple, Jérôme
  • Rindisbacher, Marcel

Abstract

A dynamic asset allocation problem in the presence of liabilities is considered. The fund manager has von Neumann-Morgenstern preferences with terminal utility function defined over the excess of liquid wealth over a minimum liability coverage tolerated and intermediate utility function defined over dividends, the excess of expenditures over liability cash flows. Preferences incorporate a parameter controlling the tolerance for a shortfall in the funding ratio at the terminal date. The optimal asset allocation rule is derived and its sensitivity with respect to the parameters of the model is analyzed.

Suggested Citation

  • Detemple, Jérôme & Rindisbacher, Marcel, 2008. "Dynamic asset liability management with tolerance for limited shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 281-294, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:281-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00062-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Rudolf, Markus & Ziemba, William T., 2004. "Intertemporal surplus management," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 975-990, February.
    4. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 30(01), pages 19-55, May.
    5. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    6. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    7. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
    8. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.
    2. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    3. Francisco Rivadeneyra & Oumar Dissou, 2011. "A Model of the EFA Liabilities," Discussion Papers 11-11, Bank of Canada.
    4. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    5. Andrew Ang & Bingxu Chen & Suresh Sundaresan, 2013. "Liability Investment with Downside Risk," NBER Working Papers 19030, National Bureau of Economic Research, Inc.
    6. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    7. Delong, Lukasz, 2010. "An optimal investment strategy for a stream of liabilities generated by a step process in a financial market driven by a Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 278-293, December.
    8. Cousin, Areski & Jiao, Ying & Robert, Christian Y. & Zerbib, Olivier David, 2016. "Asset allocation strategies in the presence of liability constraints," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 327-338.
    9. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2013. "Hedging under multiple risk constraints," Papers 1309.5094, arXiv.org.
    10. Jarraya, Bilel & Bouri, Abdelfettah, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," MPRA Paper 53534, University Library of Munich, Germany, revised 2013.
    11. Zvi Bodie & Jérôme Detemple & Marcel Rindisbacher, 2009. "Life-Cycle Finance and the Design of Pension Plans," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 249-286, November.
    12. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:281-294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.