IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p281-294.html
   My bibliography  Save this article

Dynamic asset liability management with tolerance for limited shortfalls

Author

Listed:
  • Detemple, Jérôme
  • Rindisbacher, Marcel

Abstract

A dynamic asset allocation problem in the presence of liabilities is considered. The fund manager has von Neumann-Morgenstern preferences with terminal utility function defined over the excess of liquid wealth over a minimum liability coverage tolerated and intermediate utility function defined over dividends, the excess of expenditures over liability cash flows. Preferences incorporate a parameter controlling the tolerance for a shortfall in the funding ratio at the terminal date. The optimal asset allocation rule is derived and its sensitivity with respect to the parameters of the model is analyzed.

Suggested Citation

  • Detemple, Jérôme & Rindisbacher, Marcel, 2008. "Dynamic asset liability management with tolerance for limited shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 281-294, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:281-294
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00062-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    4. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
    5. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    6. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    7. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    8. Rudolf, Markus & Ziemba, William T., 2004. "Intertemporal surplus management," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 975-990, February.
    9. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    10. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.
    2. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    3. Francisco Rivadeneyra & Oumar Dissou, 2011. "A Model of the EFA Liabilities," Discussion Papers 11-11, Bank of Canada.
    4. Andrew Ang & Bingxu Chen & Suresh Sundaresan, 2013. "Liability Investment with Downside Risk," NBER Working Papers 19030, National Bureau of Economic Research, Inc.
    5. Cousin, Areski & Jiao, Ying & Robert, Christian Y. & Zerbib, Olivier David, 2016. "Asset allocation strategies in the presence of liability constraints," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 327-338.
    6. Florian Bourgey & Emmanuel Gobet & Ying Jiao, 2022. "Bridging socioeconomic pathways of CO2 emission and credit risk," Post-Print hal-03458299, HAL.
    7. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    8. Chul Jang & Andrew Clare & Iqbal Owadally, 2024. "Liability-driven investment for pension funds: stochastic optimization with real assets," Risk Management, Palgrave Macmillan, vol. 26(3), pages 1-32, September.
    9. Mantilla-Garcia, Daniel & Martellini, Lionel & Garcia-Huitrón, Manuel E. & Martinez-Carrasco, Miguel A., 2024. "Back to the funding ratio! Addressing the duration puzzle and retirement income risk of defined contribution pension plans," Journal of Banking & Finance, Elsevier, vol. 159(C).
    10. repec:hal:wpaper:hal-03458299 is not listed on IDEAS
    11. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    12. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    13. Delong, Lukasz, 2010. "An optimal investment strategy for a stream of liabilities generated by a step process in a financial market driven by a Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 278-293, December.
    14. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2013. "Hedging under multiple risk constraints," Papers 1309.5094, arXiv.org.
    15. Artem Dyachenko & Patrick Ley & Marc Oliver Rieger & Alexander F. Wagner, 2022. "The asset allocation of defined benefit pension plans: the role of sponsor contributions," Journal of Asset Management, Palgrave Macmillan, vol. 23(5), pages 376-389, September.
    16. Zvi Bodie & Jérôme Detemple & Marcel Rindisbacher, 2009. "Life-Cycle Finance and the Design of Pension Plans," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 249-286, November.
    17. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    2. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    3. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    4. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    5. Marina Di Giacinto & Elena Vigna, 2012. "On the sub-optimality cost of immediate annuitization in DC pension funds," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 497-527, September.
    6. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    7. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    8. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    9. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    10. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: A Stochastic Optimal Control Approach," Risks, MDPI, vol. 6(2), pages 1-20, April.
    11. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    12. Liang, Zongxia & Ma, Ming, 2015. "Optimal dynamic asset allocation of pension fund in mortality and salary risks framework," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 151-161.
    13. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    14. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    15. Dormidontova, Yulia & Nazarov, Vladimir & A. Tikhonova, 2014. "Analysis of Approaches of Participants of Pension Products Market to the Development of Optimal Investment Strategies of Pension Savings," Published Papers r90227, Russian Presidential Academy of National Economy and Public Administration.
    16. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    17. Russell Gerrard & Bjarne Højgaard & Elena Vigna, 2008. "Choosing the Optimal Annuitization Time Post Retirement," Carlo Alberto Notebooks 76, Collegio Carlo Alberto.
    18. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    19. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    20. Han, Nan-wei & Hung, Mao-wei, 2012. "Optimal asset allocation for DC pension plans under inflation," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 172-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:281-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.