IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Finite-time dividend-ruin models

  • Leung, Kwai Sun
  • Kwok, Yue Kuen
  • Leung, Seng Yuen
Registered author(s):

    We consider the finite-time horizon dividend-ruin model where the firm pays out dividends to its shareholders according to a dividend-barrier strategy and becomes ruined when the firm's asset value falls below the default threshold. The asset value process is modeled as a restricted Geometric Brownian process with an upper reflecting (dividend) barrier and a lower absorbing (ruin) barrier. Analytical solutions to the value function of the restricted asset value process are provided. We also solve for the survival probability and the expected present value of future dividend payouts over a given time horizon. The sensitivities of the firm asset value and dividend payouts to the dividend barrier, volatility of the firm asset value and firm's credit quality are also examined.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 42 (2008)
    Issue (Month): 1 (February)
    Pages: 154-162

    in new window

    Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:154-162
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    2. Chu, Chi Chiu & Kwok, Yue Kuen, 2004. "Reset and withdrawal rights in dynamic fund protection," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 273-295, April.
    3. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:154-162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.