IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1106.2781.html
   My bibliography  Save this paper

Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model

Author

Listed:
  • Runhuan Feng
  • Hans Volkmer
  • Shuaiqi Zhang
  • Chao Zhu

Abstract

This paper considers the optimal dividend payment problem in piecewise-deterministic compound Poisson risk models. The objective is to maximize the expected discounted dividend payout up to the time of ruin. We provide a comparative study in this general framework of both restricted and unrestricted payment schemes, which were only previously treated separately in certain special cases of risk models in the literature. In the case of restricted payment scheme, the value function is shown to be a classical solution of the corresponding HJB equation, which in turn leads to an optimal restricted payment policy known as the threshold strategy. In the case of unrestricted payment scheme, by solving the associated integro-differential quasi-variational inequality, we obtain the value function as well as an optimal unrestricted dividend payment scheme known as the barrier strategy. When claim sizes are exponentially distributed, we provide easily verifiable conditions under which the threshold and barrier strategies are optimal restricted and unrestricted dividend payment policies, respectively. The main results are illustrated with several examples, including a new example concerning regressive growth rates.

Suggested Citation

  • Runhuan Feng & Hans Volkmer & Shuaiqi Zhang & Chao Zhu, 2011. "Optimal Dividend Payments for the Piecewise-Deterministic Poisson Risk Model," Papers 1106.2781, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1106.2781
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1106.2781
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lux, T. & M. Marchesi, "undated". "Scaling and Criticality in a Stochastic Multi-Agent Model of a Financial Market," Discussion Paper Serie B 438, University of Bonn, Germany, revised Jul 1998.
    2. M. Cristelli & L. Pietronero & A. Zaccaria, 2011. "Critical Overview of Agent-Based Models for Economics," Papers 1101.1847, arXiv.org.
    3. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1106.2781. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.