IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Dividends and reinsurance under a penalty for ruin

  • Liang, Zhibin
  • Young, Virginia R.
Registered author(s):

    We find the optimal dividend strategy in a diffusion risk model under a penalty for ruin, as in Thonhauser and Albrecher (2007), although we allow for both a positive and a negative penalty. Furthermore, we determine the optimal proportional reinsurance strategy, when so-called expensive reinsurance is available; that is, the premium loading on reinsurance is greater than the loading on the directly written insurance. One can think of our model as taking the one in Taksar (2000, Section 6) and adding a penalty for ruin.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000212
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 50 (2012)
    Issue (Month): 3 ()
    Pages: 437-445

    as
    in new window

    Handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:437-445
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    2. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1), pages 211-218.
    3. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    4. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    5. Bjarne Hø jgaard & Michael Taksar, 1999. "Controlling Risk Exposure and Dividends Payout Schemes:Insurance Company Example," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 153-182.
    6. Loeffen, R.L., 2009. "An optimal dividends problem with transaction costs for spectrally negative Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 41-48, August.
    7. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    8. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    9. Bjarne H�jgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    10. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    11. T. Choulli & M. Taksar & X. Y. Zhou, 2001. "Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 573-596.
    12. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2011. "Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs," European Journal of Operational Research, Elsevier, vol. 211(3), pages 568-576, June.
    13. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:437-445. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.