IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v37y2014icp53-64.html
   My bibliography  Save this article

Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle

Author

Listed:
  • Yao, Dingjun
  • Yang, Hailiang
  • Wang, Rongming

Abstract

In this paper we study the combined optimal dividend, capital injection and reinsurance problems in a dynamic setting. The reinsurance premium is assumed to be calculated via the variance principle instead of the expected value principle. The proportional and fixed transaction costs and the salvage value at bankruptcy are included in the model. In both cases of unrestricted dividend rate and restricted dividend rate, we obtain the closed-form solutions of the value function and the optimal joint strategies, which depend on the transaction costs and the profitability in future.

Suggested Citation

  • Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2014. "Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle," Economic Modelling, Elsevier, vol. 37(C), pages 53-64.
  • Handle: RePEc:eee:ecmode:v:37:y:2014:i:c:p:53-64
    DOI: 10.1016/j.econmod.2013.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313004537
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Xiaofan & Chen, Mi & Guo, Junyi, 2012. "Optimal dividend and equity issuance problem with proportional and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 576-585.
    2. Azcue, Pablo & Muler, Nora, 2012. "Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 26-42.
    3. Lihua Bai & Junyi Guo & Huayue Zhang, 2010. "Optimal excess-of-loss reinsurance and dividend payments with both transaction costs and taxes," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1163-1172.
    4. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    5. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    6. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    7. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    8. He, Lin & Liang, Zongxia, 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 88-94, February.
    9. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    10. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    11. Yao, Dingjun & Yang, Hailiang & Wang, Rongming, 2011. "Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs," European Journal of Operational Research, Elsevier, vol. 211(3), pages 568-576, June.
    12. repec:spr:compst:v:72:y:2010:i:1:p:129-143 is not listed on IDEAS
    13. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    14. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    15. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    16. Gerber, Hans U. & Lin, X. Sheldon & Yang, Hailiang, 2006. "A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(02), pages 489-503, November.
    17. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Gongpin & Zhao, Yongxia, 2016. "Optimal risk and dividend strategies with transaction costs and terminal value," Economic Modelling, Elsevier, vol. 54(C), pages 522-536.
    2. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:37:y:2014:i:c:p:53-64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.