IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.01668.html

Optimal dividend payout with path-dependent drawdown constraint

Author

Listed:
  • Chonghu Guan
  • Jiacheng Fan
  • Zuo Quan Xu

Abstract

This paper studies an optimal dividend problem with a drawdown constraint in a Brownian motion model, requiring the dividend payout rate to remain above a fixed proportion of its historical maximum. This leads to a path-dependent stochastic control problem, as the admissible control depends on its own past values. The associated Hamilton-Jacobi-Bellman (HJB) equation is a novel two-dimensional variational inequality with a gradient constraint, a type of problem previously only analyzed in the literature using viscosity solution techniques. In contrast, this paper employs delicate PDE methods to establish the existence of a strong solution. This stronger regularity allows us to explicitly characterize an optimal feedback control strategy, expressed in terms of two free boundaries and the running maximum surplus process. Furthermore, we derive key properties of the value function and the free boundaries, including boundedness and continuity. Numerical examples are provided to verify the theoretical results and to offer new financial insights.

Suggested Citation

  • Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org, revised Jan 2026.
  • Handle: RePEc:arx:papers:2312.01668
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.01668
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Philip H. Dybvig, 1995. "Dusenberry's Ratcheting of Consumption: Optimal Dynamic Consumption and Investment Given Intolerance for any Decline in Standard of Living," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(2), pages 287-313.
    2. Shuoqing Deng & Xun Li & Huyên Pham & Xiang Yu, 2022. "Optimal consumption with reference to past spending maximum," Finance and Stochastics, Springer, vol. 26(2), pages 217-266, April.
    3. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.
    4. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    5. T. Arun, 2012. "The Merton Problem with a Drawdown Constraint on Consumption," Papers 1210.5205, arXiv.org.
    6. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2018. "Optimal Dividend Distribution Under Drawdown and Ratcheting Constraints on Dividend Rates," Papers 1806.07499, arXiv.org, revised Mar 2019.
    7. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    8. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    9. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    10. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    11. Hansjörg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividends under a drawdown constraint and a curious square-root rule," Finance and Stochastics, Springer, vol. 27(2), pages 341-400, April.
    12. A. Max Reppen & Jean‐Charles Rochet & H. Mete Soner, 2020. "Optimal dividend policies with random profitability," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 228-259, January.
    13. Michael I. Taksar, 2000. "Optimal risk and dividend distribution control models for an insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 1-42, February.
    14. Shuoqing Deng & Xun Li & Huyen Pham & Xiang Yu, 2020. "Optimal Consumption with Reference to Past Spending Maximum," Papers 2006.07223, arXiv.org, revised Mar 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxin Guo & Zuo Quan Xu, 2024. "Stochastic optimal self-path-dependent control: A new type of variational inequality and its viscosity solution," Papers 2412.11383, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingxin Guo & Zuo Quan Xu, 2024. "Stochastic optimal self-path-dependent control: A new type of variational inequality and its viscosity solution," Papers 2412.11383, arXiv.org.
    2. Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org, revised Jul 2024.
    3. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    4. Jingyi Cao & Dongchen Li & Virginia R. Young & Bin Zou, 2025. "Equilibrium Mean-Variance Dividend Rate Strategies," Papers 2508.12047, arXiv.org.
    5. Hansjörg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividends under a drawdown constraint and a curious square-root rule," Finance and Stochastics, Springer, vol. 27(2), pages 341-400, April.
    6. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2018. "Optimal Dividend Distribution Under Drawdown and Ratcheting Constraints on Dividend Rates," Papers 1806.07499, arXiv.org, revised Mar 2019.
    7. Feng, Yang & Siu, Tak Kuen & Zhu, Jinxia, 2024. "Optimal payout strategies when Bruno de Finetti meets model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 148-164.
    8. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2022. "Optimal dividends under a drawdown constraint and a curious square-root rule," Papers 2206.12220, arXiv.org.
    9. Zongxia Liang & Xiaodong Luo & Fengyi Yuan, 2023. "Consumption-investment decisions with endogenous reference point and drawdown constraint," Mathematics and Financial Economics, Springer, volume 17, number 6, June.
    10. Li, Xun & Yu, Xiang & Zhang, Qinyi, 2023. "Optimal consumption and life insurance under shortfall aversion and a drawdown constraint," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 25-45.
    11. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    12. Jingyi Cao & Dongchen Li & Virginia R. Young & Bin Zou, 2025. "Equilibrium Strategies for Singular Dividend Control Problems under the Mean-Variance Criterion," Papers 2511.08433, arXiv.org.
    13. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2021. "Optimal Investment and Consumption under a Habit-Formation Constraint," Papers 2102.03414, arXiv.org, revised Nov 2021.
    14. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    15. Albrecher, Hansjörg & Bäuerle, Nicole & Bladt, Martin, 2018. "Dividends: From refracting to ratcheting," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 47-58.
    16. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    17. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    18. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2019. "Optimal ratcheting of dividends in insurance," Papers 1910.06910, arXiv.org, revised Jun 2021.
    19. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    20. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.01668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.