IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0503541.html
   My bibliography  Save this paper

Interplay between dividend rate and business constraints for a financial corporation

Author

Listed:
  • Tahir Choulli
  • Michael Taksar
  • Xun Yu Zhou

Abstract

We study a model of a corporation which has the possibility to choose various production/business policies with different expected profits and risks. In the model there are restrictions on the dividend distribution rates as well as restrictions on the risk the company can undertake. The objective is to maximize the expected present value of the total dividend distributions. We outline the corresponding Hamilton-Jacobi-Bellman equation, compute explicitly the optimal return function and determine the optimal policy. As a consequence of these results, the way the dividend rate and business constraints affect the optimal policy is revealed. In particular, we show that under certain relationships between the constraints and the exogenous parameters of the random processes that govern the returns, some business activities might be redundant, that is, under the optimal policy they will never be used in any scenario.

Suggested Citation

  • Tahir Choulli & Michael Taksar & Xun Yu Zhou, 2005. "Interplay between dividend rate and business constraints for a financial corporation," Papers math/0503541, arXiv.org.
  • Handle: RePEc:arx:papers:math/0503541
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0503541
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hojgaard, Bjarne & Taksar, Michael, 1998. "Optimal proportional reinsurance policies for diffusion models with transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 41-51, May.
    2. Paulsen, Jostein & Gjessing, Hakon K., 1997. "Optimal choice of dividend barriers for a risk process with stochastic return on investments," Insurance: Mathematics and Economics, Elsevier, vol. 20(3), pages 215-223, October.
    3. Taksar, Michael I. & Zhou, Xun Yu, 1998. "Optimal risk and dividend control for a company with a debt liability," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 105-122, May.
    4. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0503541. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.